四川省眉山市仁壽縣2024-2025學年初三4月模擬考試數學試題試卷含解析_第1頁
四川省眉山市仁壽縣2024-2025學年初三4月模擬考試數學試題試卷含解析_第2頁
四川省眉山市仁壽縣2024-2025學年初三4月模擬考試數學試題試卷含解析_第3頁
四川省眉山市仁壽縣2024-2025學年初三4月模擬考試數學試題試卷含解析_第4頁
四川省眉山市仁壽縣2024-2025學年初三4月模擬考試數學試題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省眉山市仁壽縣2024-2025學年初三4月模擬考試數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點A、B在數軸上表示的數的絕對值相等,且,那么點A表示的數是A. B. C. D.32.若△ABC與△DEF相似,相似比為2:3,則這兩個三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:43.如圖所示的幾何體的主視圖是()A. B. C. D.4.如圖,O為坐標原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數yA.10B.9C.8D.65.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.6.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數,這三個數的和不可能是()A.27 B.51 C.69 D.727.﹣6的倒數是()A.﹣16 B.18.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.9.如圖,小明將一張長為20cm,寬為15cm的長方形紙(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,則剪去的直角三角形的斜邊長為()A.5cm B.12cm C.16cm D.20cm10.下列運算正確的是()A.(a2)4=a6 B.a2?a3=a6 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在中,,,為邊的高,點在軸上,點在軸上,點在第一象限,若從原點出發,沿軸向右以每秒1個單位長的速度運動,則點隨之沿軸下滑,并帶動在平面內滑動,設運動時間為秒,當到達原點時停止運動連接,線段的長隨的變化而變化,當最大時,______.當的邊與坐標軸平行時,______.12.已知:如圖,△ABC內接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.13.如圖,在□ABCD中,用直尺和圓規作∠BAD的平分線AG,若AD=5,DE=6,則AG的長是________.14.從某玉米種子中抽取6批,在同一條件下進行發芽試驗,有關數據如下:種子粒數100400800100020005000發芽種子粒數8531865279316044005發芽頻率0.8500.7950.8150.7930.8020.801根據以上數據可以估計,該玉米種子發芽的概率為___________(精確到0.1).15.如圖,在直角坐標系中,點A,B分別在x軸,y軸上,點A的坐標為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發,沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負半軸上運動,如果PQ=,那么當點P運動一周時,點Q運動的總路程為__________.16.關于x的一元二次方程有實數根,則a的取值范圍是__________.17.方程的解為.三、解答題(共7小題,滿分69分)18.(10分)為落實“美麗撫順”的工作部署,市政府計劃對城區道路進行了改造,現安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?19.(5分)如圖,AC是的直徑,點B是內一點,且,連結BO并延長線交于點D,過點C作的切線CE,且BC平分.求證:;若的直徑長8,,求BE的長.20.(8分)已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,(1)如圖,連接AC、OD,設∠OAC=α,請用α表示∠AOD;(2)如圖,當點B為的中點時,求點A、D之間的距離:(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.21.(10分)如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.(1)“拋物線三角形”一定是三角形;(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.22.(10分)如圖,在Rt△ABC中,,點在邊上,⊥,點為垂足,,∠DAB=450,tanB=.(1)求的長;(2)求的余弦值.23.(12分)某商場甲、乙兩名業務員10個月的銷售額(單位:萬元)如下:甲7.29.69.67.89.346.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根據上面的數據,將下表補充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙_______________________________(說明:月銷售額在8.0萬元及以上可以獲得獎金,7.0~7.9萬元為良好,6.0~6.9萬元為合格,6.0萬元以下為不合格)兩組樣本數據的平均數、中位數、眾數如表所示:結論:人員平均數(萬元)中位數(萬元)眾數(萬元)甲8.28.99.6乙8.28.49.7(1)估計乙業務員能獲得獎金的月份有______個;(2)可以推斷出_____業務員的銷售業績好,理由為_______.(至少從兩個不同的角度說明推斷的合理性)24.(14分)如圖所示,在長和寬分別是a、b的矩形紙片的四個角都剪去一個邊長為x的正方形.(1)用a,b,x表示紙片剩余部分的面積;(2)當a=6,b=4,且剪去部分的面積等于剩余部分的面積時,求正方形的邊長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

如果點A,B表示的數的絕對值相等,那么AB的中點即為坐標原點.【詳解】解:如圖,AB的中點即數軸的原點O.

根據數軸可以得到點A表示的數是.

故選:B.此題考查了數軸有關內容,用幾何方法借助數軸來求解,非常直觀,體現了數形結合的優點確定數軸的原點是解決本題的關鍵.2、C【解析】

由△ABC與△DEF相似,相似比為2:3,根據相似三角形的性質,即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個三角形的面積比為4:1.故選C.此題考查了相似三角形的性質.注意相似三角形的面積比等于相似比的平方.3、A【解析】

找到從正面看所得到的圖形即可.【詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.4、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標,結合反比例函數圖象上點的坐標特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標為(35a,4∵點A在反比例函數y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標為(10+35b,4∵點F在反比例函數y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質、解直角三角形以及反比例函數圖象上點的坐標特征,解題的關鍵是找出S△AOF=12S菱形OBCA5、A【解析】

根據應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.6、D【解析】設第一個數為x,則第二個數為x+7,第三個數為x+1.列出三個數的和的方程,再根據選項解出x,看是否存在.解:設第一個數為x,則第二個數為x+7,第三個數為x+1故三個數的和為x+x+7+x+1=3x+21當x=16時,3x+21=69;當x=10時,3x+21=51;當x=2時,3x+21=2.故任意圈出一豎列上相鄰的三個數的和不可能是3.故選D.“點睛“此題主要考查了一元一次方程的應用,解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系列出方程,再求解.7、A【解析】解:﹣6的倒數是﹣168、C【解析】

易證△DEF∽△DAB,△BEF∽△BCD,根據相似三角形的性質可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.本題考查了相似三角形的判定及性質定理,熟練掌握性質定理是解題的關鍵.9、D【解析】

解答此題要延長AB、DC相交于F,則BFC構成直角三角形,再用勾股定理進行計算.【詳解】延長AB、DC相交于F,則BFC構成直角三角形,運用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.則剪去的直角三角形的斜邊長為1cm.故選D.本題主要考查了勾股定理的應用,解答此題要延長AB、DC相交于F,構造直角三角形,用勾股定理進行計算.10、C【解析】

根據冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法計算即可.【詳解】A、原式=a8,所以A選項錯誤;B、原式=a5,所以B選項錯誤;C、原式=,所以C選項正確;D、與不能合并,所以D選項錯誤.故選:C.本題考查了冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法,熟練掌握它們的運算法則是解答本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】

(1)由等腰三角形的性質可得AD=BD,從而可求出OD=4,然后根據當O,D,C共線時,OC取最大值求解即可;(2)根據等腰三角形的性質求出CD,分AC∥y軸、BC∥x軸兩種情況,根據相似三角形的判定定理和性質定理列式計算即可.【詳解】(1),,當O,D,C共線時,OC取最大值,此時OD⊥AB.∵,∴△AOB為等腰直角三角形,∴;(2)∵BC=AC,CD為AB邊的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,當AC∥y軸時,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴,即,解得,t=,當BC∥x軸時,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴,即,解得,t=,

則當t=或時,△ABC的邊與坐標軸平行.

故答案為t=或.本題考查的是直角三角形的性質,等腰三角形的性質,相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理、靈活運用分情況討論思想是解題的關鍵.12、2﹣π.【解析】試題分析:根據題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.13、2【解析】試題解析:連接EG,

∵由作圖可知AD=AE,AG是∠BAD的平分線,

∴∠1=∠2,

∴AG⊥DE,OD=DE=1.

∵四邊形ABCD是平行四邊形,

∴CD∥AB,

∴∠2=∠1,

∴∠1=∠1,

∴AD=DG.

∵AG⊥DE,

∴OA=AG.

在Rt△AOD中,OA==4,

∴AG=2AO=2.

故答案為2.14、1.2【解析】

仔細觀察表格,發現大量重復試驗發芽的頻率逐漸穩定在1.2左右,從而得到結論.【詳解】∵觀察表格,發現大量重復試驗發芽的頻率逐漸穩定在1.2左右,∴該玉米種子發芽的概率為1.2,故答案為1.2.考查利用頻率估計概率,大量反復試驗下頻率穩定值即概率.用到的知識點為:頻率=所求情況數與總情況數之比.15、4【解析】

首先根據題意正確畫出從O→B→A運動一周的圖形,分四種情況進行計算:①點P從O→B時,路程是線段PQ的長;②當點P從B→C時,點Q從O運動到Q,計算OQ的長就是運動的路程;③點P從C→A時,點Q由Q向左運動,路程為QQ′;④點P從A→O時,點Q運動的路程就是點P運動的路程;最后相加即可.【詳解】在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO=①當點P從O→B時,如圖1、圖2所示,點Q運動的路程為,②當點P從B→C時,如圖3所示,這時QC⊥AB,則∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴AQ=2AC,又∵CQ=,∴AQ=2∴OQ=2﹣1=1,則點Q運動的路程為QO=1,③當點P從C→A時,如圖3所示,點Q運動的路程為QQ′=2﹣,④當點P從A→O時,點Q運動的路程為AO=1,∴點Q運動的總路程為:+1+2﹣+1=4故答案為4.考點:解直角三角形16、a≤1且a≠0【解析】∵關于x的一元二次方程有實數根,∴,解得:,∴a的取值范圍為:且.點睛:解本題時,需注意兩點:(1)這是一道關于“x”的一元二次方程,因此;(2)這道一元二次方程有實數根,因此;這個條件缺一不可,尤其是第一個條件解題時很容易忽略.17、.【解析】試題分析:首先去掉分母,觀察可得最簡公分母是,方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解,然后解一元一次方程,最后檢驗即可求解:,經檢驗,是原方程的根.三、解答題(共7小題,滿分69分)18、(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.【解析】

(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據工作時間=工作總量÷工作效率結合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設安排甲隊工作m天,則安排乙隊工作天,根據總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結合總費用不超過145萬元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.【詳解】(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據題意得:,解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x=×40=60,答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;(2)設安排甲隊工作m天,則安排乙隊工作天,根據題意得:7m+5×≤145,解得:m≥10,答:至少安排甲隊工作10天.本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量間的關系,正確列出一元一次不等式.19、(1)證明見解析;(2).【解析】

先利用等腰三角形的性質得到,利用切線的性質得,則CE∥BD,然后證明得到BE=CE;作于F,如圖,在Rt△OBC中利用正弦定義得到BC=5,所以,然后在Rt△BEF中通過解直角三角形可求出BE的長.【詳解】證明:,,,是的切線,,,.平分,,,;解:作于F,如圖,

的直徑長8,.,,,,在中,設,則,,即,解得,.故答案為(1)證明見解析;(2).本題考查切線的性質:圓的切線垂直于經過切點的半徑若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系簡記作:見切點,連半徑,見垂直也考查了解直角三角形.20、(1);(2);(3)【解析】

(1)連接OB、OC,可證△OBC是等邊三角形,根據垂徑定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的內角和定理即可表示出∠AOD的值.(2)連接OB、OC,可證△OBC是等邊三角形,根據垂徑定理可得∠DOB等于30°,因為點D為BC的中點,則∠AOB=∠BOC=60°,所以∠AOD等于90°,根據OA=OB=2,在直角三角形中用三角函數及勾股定理即可求得OD、AD的長.(3)分兩種情況討論:兩圓外切,兩圓內切.先根據兩圓相切時圓心距與兩圓半徑的關系,求出AD的長,再過O點作AE的垂線,利用勾股定理列出方程即可求解.【詳解】(1)如圖1:連接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等邊三角形∴∠BOC=60°∵點D是BC的中點∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如圖2:連接OB、OC、OD.由(1)可得:△OBC是等邊三角形,∠BOD=∵OB=2,∴OD=OB?cos=∵B為的中點,∴∠AOB=∠BOC=60°∴∠AOD=90°根據勾股定理得:AD=(3)①如圖3.圓O與圓D相內切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=設AF=x在Rt△AFO和Rt△DOF中,即解得:∴AE=②如圖4.圓O與圓D相外切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=在Rt△AFO和Rt△DOF中,即解得:∴AE=本題主要考查圓的相關知識:垂徑定理,圓與圓相切的條件,關鍵是能靈活運用垂徑定理和勾股定理相結合思考問題,另外需注意圓相切要分內切與外切兩種情況.21、(1)等腰(2)(3)存在,【解析】解:(1)等腰(2)∵拋物線的“拋物線三角形”是等腰直角三角形,∴該拋物線的頂點滿足.∴.(3)存在.如圖,作△與△關于原點中心對稱,則四邊形為平行四邊形.當時,平行四邊形為矩形.又∵,∴△為等邊三角形.作,垂足為.∴.∴.∴.∴,.∴,.設過點三點的拋物線,則解之,得∴所求拋物線的表達式為.22、(1)3;(2)【解析】分析:(1)由題意得到三角形ADE為等腰直角三角形,在直角三角形DEB中,利用銳角三角函數定義求出DE與BE之比,設出DE與BE,由AB=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論