




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
AgendaFoundationCh1~4ImagingSystem,Digitalization,Display,SoftwareCh5~8Histogram,PointOperations,AlgebraicOperations,GeometricOperationsTheoryCh9~12LinearSystem,FourierFrequencyTransform,FilterDesign,DiscreteSamplingCh13~15OrthogonalRadicleTransform,WaveletTime-frequencyTransform,OpticalFunctionTransformApplicationCh16~20ImageRestoration,Compression,PatternRecognitionCh21~22ColorandMulti-SpectralImageProcessing,ThreeDimensionImageProcessing1、KnowledgeofComplexAlgebraicexpression:Geometricalexpression:Complexfunction:ziscomplex
so2、TheFourierTransform§2.1definitionTheFouriertransformofaone-dimensionalfunctionf(t)is:
TheinverseFouriertransformofF(s)isdefinedas:§2.2TheDiscreteFourierTransformIfwediscretizebothtimeandfrequency:Inversetransform:where:then:§
2.3TheFouriertransformintwodimensionsThedirectFouriertransform:TheinverseFouriertransform:3、SometypicalFouriertransformRectangularpulsetransform:Figure3-12transformFouriertransformoffinitewavetrainFigure3-15Fouriertransformoffinitewavetrain
FouriertransformoftriangleBothoftheinputsarerectangularpulseConvolveoutputistrianglepulse
TheHankelTransformTwo-dimensionalFouriertransform:Two-dimensionalfunctionwithcircularsymmetrymaybetreatedasone-dimensionalfunctionsofasingleradialvariable:Dovariablesubstitution:
Thus,theFouriertransformoff(x,y)is:
where4、CorrelationandthepowerspectrumSelf-convolution:Autocorrelation:Thepowerspectrum,theFouriertransformoftheautocorrelationfunctionis:Andiscalledthepowerspectraldensityfunctionorpowerspectrumoff(t).AgendaFoundationCh1~4ImagingSystem,Digitalization,Display,SoftwareCh5~8Histogram,PointOperations,AlgebraicOperations,GeometricOperationsTheoryCh9~12LinearSystem,FourierFrequencyTransform,FilterDesign,DiscreteSamplingCh13~15OrthogonalRadicleTransform,WaveletTime-frequencyTransform,OpticalFunctionTransformApplicationCh16~20ImageRestoration,Compression,PatternRecognitionCh21~22ColorandMulti-SpectralImageProcessing,ThreeDimensionImageProcessingChapter11
FilterDesignAgendaFoundationCh1~4ImagingSystem,Digitalization,Display,SoftwareCh5~8Histogram,PointOperations,AlgebraicOperations,GeometricOperationsTheoryCh9~12LinearSystem,FourierFrequencyTransform,FilterDesign,DiscreteSamplingCh13~15OrthogonalRadicleTransform,WaveletTime-frequencyTransform,OpticalFunctionTransformApplicationCh16~20ImageRestoration,Compression,PatternRecognitionCh21~22ColorandMulti-SpectralImageProcessing,ThreeDimensionImageProcessingChapter11
FilterDesign11.1FilterWhatisafilter?Whyshouldweintroducethefilter?Duetosomenoiseinsignalorimages,thefiltercanbeusedasatoolofnoisereductioninsomefrequencybands.It’susuallyinterestedincertaincomponentsofthesignalorimages,soweusefilterstoeliminateuselesscomponentsandenhanceusefulones.LOWPASSFilter
1、ideallowpass
Sinc(t)s(t)
1
-S00
S0
stt
Remainthepartof|S|≤S0,removethepartof|S|≥S0,thetime-frequencyisafunctionofSinc:Sin(t)/t;disadvantages:“overshoot”willbeproducedinbothendsofgradationzoneoforiginalsignals.1)TheBoxFilterConvolvingthesignalf(x)withtherectangularpulsetoreducehigh-frequencynoisewithlocalaveraging.
Thewidthofthetransferfunctionisinverselyproportionaltothewidthoftheimpulseresponse;Aslongastheboxfilterisnomorethantwopixelswide,thefirstzero-crossingofitstransferfunctionfallsatorabovethehighestfrequencyfo
;Iftheboxfilterismorethantwopixelswide,however,thereisthedangerofpolarityreversalforsmallstructuresintheimage,andthefirstzero-crossingofitstransferfunctionfallsbelowthehighestfrequencyfo
TheBoxFilterIfthetimedomainis∏(t):
ThefrequencydomainisSinc(s):
disadvantages:polarityreversalts2)TheTriangularFilter
Wecanusethetriangularpulse,asalowpassfilterimpulseresponse.Λ(t)=>Sinc2(s);wouldn’tfearofpolarityreversal;canbesimulatedbyrectangularfilter.
ts3)TheGaussianLowpassFilter:GaussianFunctionyieldsalowpassfilter.
11.3BANDPASSANDBANDSTOPFILTERSThistypeoffilterspassesorstopsparticularfrequenciestopickupusefulcomponents.
Weselectanonnegativeunimodalfunctionandconvolveitwithanevenimpulsepairatfrequencytoconstructabandpassfilter.
Bandstopfiltersinfactbelongtobandpassfilters,
Itstransferfunctioncanbegotwith1minusbandpassfilter.1)TheIdealBandpassFilterconsiderThattransferfunctionisgivenby:Thentheimpulseresponsebecomes:2)TheIdealBandstopFilterThetransferfunctionis:Fromthetransferfunctiontheimpulseresponseis:1、TheIdealBandpassFilter:
Movethefrequencyof∏(s);0s
Theformula:2·Sinc(t)·cos(2πS0t)
2、TheIdealBandstopFilter:1-thenidealbandpassfilter。
s3)TheGeneralBandpassFilterWeselectanonnegativeunimodalfunctionK(s)andconvolveitwithanevenimpulsepairatfrequencyS0.Thisyieldsabandpasstransferfunction:Theimpulseresponseisgivenby:
s11.4HIGH-FREQUENCYENHANCEMENTFILTERSHigh-frequencyenhancementfilter(highpassfilter)Itisgenerallytakentodescribeatransferfunctionthatisunityatzerofrequencyandincreaseswithincreasingfrequency.Suchatransferfunctionmayeitherleveloffatsomevaluegreaterthanunityor,morecommonly,fallbacktowardzeroathigherfrequencies.
Inpractice,itissometimesdesiredtohavelessthanunitygainatzerofrequency,soastoreducethecontrastoflarge,slowlyvaryingcomponentsoftheimage.Ifthetransferfunctionpassesthroughtheorigin,itmaybecalledaLaplacianfilter.highpass/high-frequencyenhancement
Ideal:
sGeneral:
s1)TheDifference-of-Gaussians(DOG)Filter(1)Principle:thedifferenceoftwoGaussiansFigure11-8TheGaussianhigh-frequencyenhancementtransferfunctionTheimpulseresponseofthefilteris:Theimpulseresponseofsuchafilteris:isfiniteRulesofThumbforHighpassFilterDesign:(1)MaximumValue(2)Low-FrequencyResponseInlargeareawithconstantgraylevel:s=0,thenG(s)=1.Thefilterdoesnotchangeitscontrast.
11.5.1classificationoflinearfilterLow-passFiltersReduceoreliminatehigh-frequencycomponentsandpasslow-frequencycomponentsMaketheimagefuzzy,eliminatenoiseHigh-passFiltersReduceoreliminatelow-frequencycomponentsandpasshigh-frequencycomponentsMaketheimageshapening,enhancethebordersBand-passFiltersPassorstopparticularfrequenciesDefinition:asystemcanfilterssomefrequencies.Fouriertransformtofrequencydomainisoftenusedtoanalyzevariousfilters.1Lowpass1Highpass1BandpassFrequencyDomain000SpatialDomain11.5.2optimallinearfilterdesign1)RandomvariablesRandomnoise:describesanunknowncontaminatingsignal.Randomvariables:consideranensembleofinfinitelymanymemberfunctions.Whenwemakeourrecording,oneofthosememberfunctionsemergestocontaminateourrecord,butwehavenowayofknowingwhichone.Wecan,however,makegeneralstatementsabouttheensembleasagroup.Inthisway,wecanexpressourpartialknowledgeofthecontaminatingsignal.ErgodicRandomVariablesTherearetwowaysbywhichonecancomputeaveragesofarandomvariable.
(1)wecancomputeatimeaveragebyintegratingaparticularmemberfunctionoveralltime;(2)averagetogetherthevaluesofallmemberfunctionsevaluatedatsomeparticularpointintime.
Arandomvariableisergodicifandonlyif
(1)thetimeaveragesofallmemberfunctionsareequal
(2)theensembleaverageisconstantwithtime
(3)thetimeaverageandtheensembleaveragearenumericallyequal.Thus,forergodicrandomvariables,timeaveragesandensembleaverageareinterchangeable.Expectationoperatordenotestheensembleaverageoftherandomvariablexcomputedattimet.Undertheergodicityproperty,italsodenotesthevalueobtainedwhenanyparticularsampleoftherandomvariableisaveragedovertime;thatis:Aergodicrandomvariablesisanunknownfunctionthathasaknownautocorrelationfunction.Maincontents:ThepurposeandfunctionofWienerFilter;Randomvariables;DerivationofWienerfilter’stransferfunction;ExamplesoftheWienerFilterUncorrelatedsignalandnoiseWienerDeconvolutionSummarypurposeandfunction:purpose:RecoveranunknowncontaminatedsignalFunction:Estimateuncontaminatedoriginalsignal.Estimatetheformandshapeoforiginalsignal.Recoverunknownsignalfromadditivesignal,thatistheoptimallinearfilter.MaincontentsThemodelofWienerfilterTheoptimalitycriterionofWienerfilterExamplesoftheWienerfilterTransferfunctionunderuncorrelatedsignalandnoiseWienerdeconvolution1.Wienerfiltermodel——theclassiclinearfilterUsefulsignalObservedsignalImpulseresponseTheoutputofthefilterAdditivenoisesignalFigure1.theconfigurationofWienerEstimatorAim:
selecttheappropriateh(t)tomakey(t)ascloseaspossibletos(t)Points:
discussonedimensionsignal;Bothoriginalsignals(t)andadditivenoisen(t)areergodicrandomvariables;Theirpowerspectraisknown.2.PropertiesofrandomvariablesandergodicrandomvariablesNecessaryandsufficientconditionsofergodicrandomvariables:(1)thetimeaveragesofallmemberfunctionsareequal
(2)theensembleaverageisconstantwithtime
(3)thetimeaverageandtheensembleaveragearenumericallyequal.Randomvariables:weonlyhavesomegeneralknowledgeofacertainsignal,butlackspecificdetails,wedescribethesignalasrandom。Thepropertiesofergodicrandomvariables:Weintroducedtheexpectationoperatortodenotetheensembleaverageoftherandomvariablexcomputedattimet,italsodenotesthevalueobtainedwhenanyparticularsampleoftherandomvariableisaveragedovertime,thatisexpectationcanbewrittenastheformofintegral。Forergodicrandomvariables,theautocorrelationfunctionisthesameforallmemberfunction,anditthuscharacterizestheensemble.Ifn(t)isergodicrandomvariable,thenitsautocorrelationfunctionisknown:Itspowerspectrum3.OptimalitycriterionofWienerfilterUseminimizedmeansquareerrorasacriterionofoptimalityErrorsignal:meansquareerror:Points:Giventhepowerspectraofs(t)andn(t),wemustdeterminetheimpulseresponseh(t)thatminimizesthemeansquareerror;Themeansquareerrorisafunctionalofh(t),theimpulseresponse,sinceafunction,h(t),mapsintoarealnumber,MSE.
ispositiveforbothpositiveandnegativeerrors.Squaringtheerrorcauseslargeerrorstobe“penalized”moreseverelythansmallerrors。4.ObtainthefunctionalexpressionforMSEintermsofh(t)y(t)istheconvolutionofx(t)andh(t)Alsodevelopedintheformofconvolutioncross-correlationfunctionofs(t)andx(t)
5.SeekingtominimizeMSEMSEisthefunctionofh(t)NecessaryandsufficientconditionsoftheoptimalWienerestimatorTakingthefouriertransformofbothside:Substitutesuboptimalimpulseresponsefunctionintoformula(1)Points:(1)Foranylinearsystem,thecross-correlationbetweeninputandoutputisgivenbyTheautocorrelationfunctionofinputsignalWienerfiltermakesthecross-correlationfunctionofinputandoutputequalsthecross-correlationfunctionofsignaland(signalplusnoise)TransferfunctionofWienerfilter:FrequencydomainspecificationoftheWienerestimator(2)6.TransferfunctionandMSEofWienerfilterundertheconditionofuncorrelatedsignalandnoiseUncorrelatedsignalandnoisemeansthat:MSEofWienerfilter’soutput:Basedonformula(2),wecanderiveandprovetheconclusionsbelow:ThetransferfunctionofWienerfilteris:Figure2TheWienerfiltertransferfunctionAtthelowfrequnencies,thesignalpowerismuchlargerthanthatofthenoise,andthetransferfunctiontakesonvaluesnear1;Itthendecreasestoavalueof0.5atthepointwherethesignalandnoisepowerareequal;Atthehighfrequencies,thetransferfunctiondeclinestowardzero,whicharedominatedbythenoise;MSE:MSEisnonzerowhereboththesignalandnoisepowerspectraarenonzero.Figure3SeparablesignalandnoiseTheWienerestimatorpassesthesignalinitsentiretyanddiscriminatescompletelyagainstthenoise.Figure4Bandlimitedsignal7.WienerDeconvolutionFigure5WienerdeconvolutionThetransferfunctionoftheoptimaldeconvolutionfilterinthemeansquaresenseis:S(t)w(t)x(t)n(t)y(t)z(t)F(s)1/F(s)+G(s)Figure6WienerdeconvolutionexamplesThesignalhasaGaussianpowerspectrum,andthenoiseiswhite.Theblurringfunctionistheopticaltransferfunctionofaperfectlens.Atlowfrequencies,G(s)increaseswithfrequency,tocompensateforF(s);byyhemidrange,G(s)begingstorollofftowardzerotoblockthenoise.LimitationofWienerdeconvolutionThoughWienerfilteroffersaoptimalmethodtoderivedeconvolutionfunctioninnoisecases,therearethreequestionslimititsavailability.MSEcriteriongivesthesameweight
toalloftheerrors(nomatterinwhichpositionoftheimage),
buthumaneyes
aremoretolerantindarkandhighgradientareasthaninotherareas.MinimizingMSE,Wienerfilterssmoothimagesusingthemethodnotmostsuitableforhumaneyes.
ClassicWienerfiltercannotdealwiththespacevariablesituation,e.g.astigmatism,fieldbendandmotionblurincludingrotation.
Can'tdealwiththegeneralsituationwithnon-steadysignalandnoise.Mostimagesarehighlynon-steady,thathavelargesmoothareasseparatedbytheprecipitousedge,inaddition,alotofimportantnoisesourcesarerelatedtolocalgreylevel.ItisaquiteconservativecourseofWienerdeconvelution,thatemphasizesonnoiseinhibitionbutnotreconstructsthesignal.TheMatchedDetector(filter)Throughtransferfunction
maximizingthesignal-to-noisepowerratioinoutputendofthefilter,detectwhethertheprescribedsignalexistsinthepresenceofnoise(location).
Figure11-21AmodelequivalenttothatofFigure11-20Thematcheddetectordetectthepresenceorabsenceofaparticularknowninputsignal,ratherthantoestimateitsnoise-freeshape.Figure11-23InputandoutputcomponentsignalsThefigurebelowillustratesboththeWienerestimatorandthematcheddetectorwhenthesignalisaGaussianpulseembeddedinwhiterandomnoise.Inthiscase,thesignal-to-noiseratioisontheorderofunity.SignalWienerfilteroutputSignal+noiseFigure11-26ComparisonoftheWienerandmatchedfiltersMatchedfilteroutput
SpectrafunctionsofWienerestimatorandthematcheddetectorWienerestimatorwantstheareaunderMSEintegrandtobesmall,thematcheddetectorwantthesignalpowerspectraismuchlargerthanthenoisepowerspectraatsomefrequency.ForuncorrelatedsignalandnoisetheWienerestimatortransferfunctionis:TheMSEis:IfweletC=1,thematcheddetectortransferfunctionbecomes:Thesignal-to-noisepowerratioatitsoutputis:ComparisonoftheWienerestimatorandthematcheddetectorWienerfilterMatchedfilteraimRecovertheoriginalsignalfromnoiseLocatetheknownsignalinanoisybackgroundfunction“estimate”theformandshapeofthenon-contaminatedsignal“detect”theoccurrenceofasignalofprescribedforminthepresenceofnoise.Justuseittojudgewhetherthesignaloccurs.Transferfunctionandevaluation
realandeven,between0-1
c=1,HermiteisarbitraryNoisediscrim
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店客戶滿意度提升案例試題及答案
- 2024年高新技術應用試題及答案
- 探討商務禮儀師考試真題分析試題及答案
- 焊接工程師資格證書考試中常見文獻的利用試題及答案
- 機械工程師資格證書考試說明與策略試題及答案
- 交通大數據在決策中的應用實證研究試題及答案
- 2024年酒店經營管理師考試的跨文化交流試題與答案
- 電氣自動化基本知識試題及答案
- 焊接工程師資格考試職業發展的重要性試題及答案
- 系統化學習紡織機械操作試題及答案
- 中醫養生館運營方案項目市場調研報告
- 光學掃描全息
- 2015山東省水利水電建筑工程預算定額((下冊))
- 注水試驗自動計算表
- 氣溶膠對層積云微物理特性和液態水路徑的影響
- 軟件測試類能力評分標準
- GB/T 43220-2023固體生物質燃料中砷的測定方法
- 云貴高原(擴展課)-課件
- 大話務場景保障
- 中成藥藥品說明書的英譯
- 高等數學-函數的概念課件
評論
0/150
提交評論