




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市崇明縣大同中學(xué)2025屆高三下學(xué)期第四次周考數(shù)學(xué)試題試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則(
)A.10 B.11 C.12 D.132.“”是“函數(shù)的圖象關(guān)于直線對(duì)稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知集合,,則()A. B. C. D.4.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.5.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國(guó)古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨(dú)特,神獸人們喜愛.下圖即是一副窗花,是把一個(gè)邊長(zhǎng)為12的大正方形在四個(gè)角處都剪去邊長(zhǎng)為1的小正方形后剩余的部分,然后在剩余部分中的四個(gè)角處再剪出邊長(zhǎng)全為1的一些小正方形.若在這個(gè)窗花內(nèi)部隨機(jī)取一個(gè)點(diǎn),則該點(diǎn)不落在任何一個(gè)小正方形內(nèi)的概率是()A. B. C. D.6.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.7.從裝有除顏色外完全相同的3個(gè)白球和個(gè)黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則A. B. C. D.8.函數(shù)的一個(gè)單調(diào)遞增區(qū)間是()A. B. C. D.9.一個(gè)正四棱錐形骨架的底邊邊長(zhǎng)為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.10.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.11.若,則下列不等式不能成立的是()A. B. C. D.12.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實(shí)數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.14.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_.15.若關(guān)于的不等式在時(shí)恒成立,則實(shí)數(shù)的取值范圍是_____16.已知變量(m>0),且,若恒成立,則m的最大值________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè).若在上恒成立,求實(shí)數(shù)的最大值.18.(12分)在△ABC中,角所對(duì)的邊分別為向量,向量,且.(1)求角的大小;(2)求的最大值.19.(12分)在中,角的對(duì)邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長(zhǎng).20.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.21.(12分)已知等差數(shù)列的前n項(xiàng)和為,等比數(shù)列的前n項(xiàng)和為,且,,.(1)求數(shù)列與的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.22.(10分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點(diǎn),直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點(diǎn)O到直線l的距離為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.2.A【解析】
先求解函數(shù)的圖象關(guān)于直線對(duì)稱的等價(jià)條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對(duì)稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對(duì)稱”的充分不必要條件.故選:A本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.3.B【解析】
求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.4.D【解析】
設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計(jì)算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D本題考查圓錐的體積的計(jì)算,涉及到圓錐的定義,是一道容易題.5.D【解析】
由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.6.D【解析】
“是的充分不必要條件”等價(jià)于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡(jiǎn)為,,所以中變量取值的集合是中變量取值集合的真子集,所以.利用原命題與其逆否命題的等價(jià)性,對(duì)是的充分不必要條件進(jìn)行命題轉(zhuǎn)換,使問題易于求解.7.B【解析】
由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.本題考查離散型隨機(jī)變量的方差的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用.8.D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡(jiǎn)表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).9.B【解析】
根據(jù)正四棱錐底邊邊長(zhǎng)為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長(zhǎng)為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.10.D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡(jiǎn),然后用模長(zhǎng)公式求模長(zhǎng).【詳解】解:z====﹣﹣,則|z|====.故選:D.本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.11.B【解析】
根據(jù)不等式的性質(zhì)對(duì)選項(xiàng)逐一判斷即可.【詳解】選項(xiàng)A:由于,即,,所以,所以,所以成立;選項(xiàng)B:由于,即,所以,所以,所以不成立;選項(xiàng)C:由于,所以,所以,所以成立;選項(xiàng)D:由于,所以,所以,所以,所以成立.故選:B.本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.12.C【解析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項(xiàng)進(jìn)行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
畫出可行域,平移基準(zhǔn)直線到可行域邊界位置,由此求得最大值以及最小值,進(jìn)而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當(dāng)直線過點(diǎn)時(shí),取得最大值7;過點(diǎn)時(shí),取得最小值2,所以.本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對(duì)應(yīng)的基準(zhǔn)直線;然后通過平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.14.【解析】
根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn)此時(shí),目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.15.【解析】
利用對(duì)數(shù)函數(shù)的單調(diào)性,將不等式去掉對(duì)數(shù)符號(hào),再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問題,進(jìn)而求得的取值范圍。【詳解】由得,兩邊同除以,得到,,,設(shè),,由函數(shù)在上遞減,所以,故實(shí)數(shù)的取值范圍是。本題主要考查對(duì)數(shù)函數(shù)的單調(diào)性,以及恒成立問題的常規(guī)解法——分離參數(shù)法。16.【解析】
在不等式兩邊同時(shí)取對(duì)數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】不等式兩邊同時(shí)取對(duì)數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導(dǎo)數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e本題考查函數(shù)單調(diào)性與導(dǎo)數(shù)之間的應(yīng)用,根據(jù)條件利用取對(duì)數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).【解析】
(Ⅰ)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立;在時(shí),經(jīng)過分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立,由此得出,進(jìn)而可得出實(shí)數(shù)的最大值.【詳解】(Ⅰ)函數(shù)的定義域?yàn)?當(dāng)時(shí),.令,解得(舍去),.當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞增.因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構(gòu)造函數(shù),,則,,,.又,在上恒成立.所以,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),在上恒成立.(ii)若,構(gòu)造函數(shù),.,所以,函數(shù)在上單調(diào)遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,,不合題意,,即.此時(shí)構(gòu)造函數(shù),.,,,,恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.綜上,實(shí)數(shù)的最大值為本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問題,本題的難點(diǎn)在于不斷構(gòu)造新函數(shù)來(lái)求解,考查推理能力與運(yùn)算求解能力,屬于難題.18.(1)(2)2【解析】
(1)轉(zhuǎn)化條件得,進(jìn)而可得,即可得解;(2)由化簡(jiǎn)可得,由結(jié)合三角函數(shù)的性質(zhì)即可得解.【詳解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值為2.本題考查了平面向量平行、正弦定理以及三角恒等變換的應(yīng)用,考查了三角函數(shù)的性質(zhì),屬于中檔題.19.(1);(2)【解析】
(1)由正弦定理可得,,化簡(jiǎn)并結(jié)合,可求得三者間的關(guān)系,代入余弦定理可求得;(2)由(1)可求得,再結(jié)合三角形的面積公式,可求出,從而可求出答案.【詳解】(1)因?yàn)?所以,整理得:.因?yàn)?所以,所以.由余弦定理可得.(2)由(1)知,則,因?yàn)榈拿娣e是,所以,即,解得,則.故的周長(zhǎng)為:.本題考查了正弦定理、余弦定理在解三角形中的應(yīng)用,考查了三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.20.(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點(diǎn)M,連接ME,證明;(Ⅱ)由題意可知點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點(diǎn)M,連接ME,則.因?yàn)槠矫妫矫?,所以平面.(Ⅱ)因?yàn)槠矫鍭BC,所以點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離.如圖,設(shè)O是AC的中點(diǎn),連接,OB.因?yàn)闉檎切?,所以,又平面平面,平面平面,所以平面ABC.所以點(diǎn)到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.本題考查證明線面平行,計(jì)算體積,意在考查推理證明,空間想象能力,計(jì)算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關(guān)鍵是證明線線平行,一般構(gòu)造平行四邊形,則對(duì)邊平行,或是構(gòu)造三角形中位線.21.(1);(2)【解析】
(1)設(shè)數(shù)列的公差為d,由可得,,由即可解得,故,由,即可解得,進(jìn)而求得.(2)由(1)得,,利用分組求和及錯(cuò)位相減法即可求得結(jié)果.【詳解】(1)設(shè)數(shù)列的公差為d,數(shù)列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同變更必須遵守的原則
- 大數(shù)據(jù)數(shù)據(jù)治理團(tuán)隊(duì)協(xié)作重點(diǎn)基礎(chǔ)知識(shí)點(diǎn)
- 2025標(biāo)準(zhǔn)版購(gòu)銷合同模板
- 模具設(shè)計(jì)師資格考試的時(shí)間管理試題及答案
- 農(nóng)業(yè)植保員考試的核心知識(shí)試題及答案
- 模具設(shè)計(jì)的重要性與影響試題及答案
- 2024年微生物檢驗(yàn)技師考試試題及答案概覽
- 證券分析工具使用的考題及答案
- 證券從業(yè)資格證考試節(jié)奏把握試題及答案
- 細(xì)菌檢驗(yàn)的標(biāo)準(zhǔn)操作程序試題及答案
- 《旅行社經(jīng)營(yíng)管理》考試復(fù)習(xí)題庫(kù)及答案
- 粵教版五年級(jí)下冊(cè)科學(xué)知識(shí)點(diǎn)
- 《最好的未來(lái)》合唱曲譜
- 文言文《守株待兔》說(shuō)課稿課件
- 生物礦物課件
- GB∕T 36765-2018 汽車空調(diào)用1,1,1,2-四氟乙烷(氣霧罐型)
- DB34-T 4243-2022 智慧醫(yī)院醫(yī)用耗材SPD驗(yàn)收規(guī)范
- 《覺醒年代》朗誦稿
- 混凝土格構(gòu)梁護(hù)坡施工方案設(shè)計(jì)
- 小學(xué)教育專業(yè)畢業(yè)論文
- 西南交通大學(xué)學(xué)報(bào)排模板
評(píng)論
0/150
提交評(píng)論