




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省騰沖市第八中學2025屆高三下學期3月份模擬(梧州二模)考試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則A. B. C. D.2.已知函數,若,則等于()A.-3 B.-1 C.3 D.03.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.4.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.5.函數的部分圖像如圖所示,若,點的坐標為,若將函數向右平移個單位后函數圖像關于軸對稱,則的最小值為()A. B. C. D.6.函數的部分圖象大致為()A. B.C. D.7.函數,,則“的圖象關于軸對稱”是“是奇函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知的展開式中的常數項為8,則實數()A.2 B.-2 C.-3 D.39.把函數的圖象向右平移個單位,得到函數的圖象.給出下列四個命題①的值域為②的一個對稱軸是③的一個對稱中心是④存在兩條互相垂直的切線其中正確的命題個數是()A.1 B.2 C.3 D.410.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件11.設復數滿足,則()A.1 B.-1 C. D.12.設等比數列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數為________.14.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________15.如圖是九位評委打出的分數的莖葉統計圖,去掉一個最高分和一個最低分后,所剩數據的平均分為_______.16.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結論的序號是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.18.(12分)已知各項均為正數的數列的前項和為,滿足,,,,恰為等比數列的前3項.(1)求數列,的通項公式;(2)求數列的前項和為;若對均滿足,求整數的最大值;(3)是否存在數列滿足等式成立,若存在,求出數列的通項公式;若不存在,請說明理由.19.(12分)在某外國語學校舉行的(高中生數學建模大賽)中,參與大賽的女生與男生人數之比為,且成績分布在,分數在以上(含)的同學獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數據用該組區間的中點值作代表);(Ⅱ)填寫下面的列聯表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關”.女生男生總計獲獎不獲獎總計附表及公式:其中,.20.(12分)設,(1)求的單調區間;(2)設恒成立,求實數的取值范圍.21.(12分)已知是遞增的等差數列,,是方程的根.(1)求的通項公式;(2)求數列的前項和.22.(10分)已知函數,.(1)若函數在上單調遞減,且函數在上單調遞增,求實數的值;(2)求證:(,且).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】分析:根據集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內容,一般以客觀題形式出現,一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續型”集合則可借助不等式進行運算.2.D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數的表示方法,解題時注意根據問題的條件和求解的結論之間的關系去尋找函數的解析式要滿足的關系.3.A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.4.D【解析】
建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設拋物線,代入點,可得∴焦點為,即焦點為中點,設焦點為,,,∴.故選:D【點睛】本小題考查圓錐曲線的概念,拋物線的性質,兩點間的距離等基礎知識;考查運算求解能力,空間想象能力,推理論證能力,應用意識.5.B【解析】
根據圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數圖象關于軸對稱,求得的最小值.【詳解】由于,函數最高點與最低點的高度差為,所以函數的半個周期,所以,又,,則有,可得,所以,將函數向右平移個單位后函數圖像關于軸對稱,即平移后為偶函數,所以的最小值為1,故選:B.【點睛】該題主要考查三角函數的圖象和性質,根據圖象求出函數的解析式是解決該題的關鍵,要求熟練掌握函數圖象之間的變換關系,屬于簡單題目.6.B【解析】
圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況。【詳解】,故奇函數,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B。【點睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。7.B【解析】
根據函數奇偶性的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】設,若函數是上的奇函數,則,所以,函數的圖象關于軸對稱.所以,“是奇函數”“的圖象關于軸對稱”;若函數是上的偶函數,則,所以,函數的圖象關于軸對稱.所以,“的圖象關于軸對稱”“是奇函數”.因此,“的圖象關于軸對稱”是“是奇函數”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數奇偶性的性質判斷是解決本題的關鍵,考查推理能力,屬于中等題.8.A【解析】
先求的展開式,再分類分析中用哪一項與相乘,將所有結果為常數的相加,即為展開式的常數項,從而求出的值.【詳解】展開式的通項為,當取2時,常數項為,當取時,常數項為由題知,則.故選:A.【點睛】本題考查了兩個二項式乘積的展開式中的系數問題,其中對所取的項要進行分類討論,屬于基礎題.9.C【解析】
由圖象變換的原則可得,由可求得值域;利用代入檢驗法判斷②③;對求導,并得到導函數的值域,即可判斷④.【詳解】由題,,則向右平移個單位可得,,的值域為,①錯誤;當時,,所以是函數的一條對稱軸,②正確;當時,,所以的一個對稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個.故選:C【點睛】本題考查三角函數的圖像變換,考查代入檢驗法判斷余弦型函數的對稱軸和對稱中心,考查導函數的幾何意義的應用.10.A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點睛】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力.11.B【解析】
利用復數的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復數的四則運算,需掌握復數的運算法則,屬于基礎題.12.C【解析】
根據等比數列的前項和公式,判斷出正確選項.【詳解】由于數列是等比數列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數列前項和公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.30【解析】
先將問題轉化為二項式的系數問題,利用二項展開式的通項公式求出展開式的第項,令的指數分別等于2,4,求出特定項的系數.【詳解】由題可得:展開式中的系數等于二項式展開式中的指數為2和4時的系數之和,由于二項式的通項公式為,令,得展開式的的系數為,令,得展開式的的系數為,所以展開式中的系數,故答案為30.【點睛】本題考查利用二項式展開式的通項公式解決二項展開式的特定項的問題,考查學生的轉化能力,屬于基礎題.14.【解析】
根據題意畫出圖形,設,利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設,由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關系的應用,以及三角形相似的應用,著重考查了數形結合思想,以及推理與運算能力,屬于基礎題.15.1【解析】
寫出莖葉圖對應的所有的數,去掉最高分,最低分,再求平均分.【詳解】解:所有的數為:77,78,82,84,84,86,88,93,94,共9個數,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數,平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數的計算,屬于基礎題.16.①②③【解析】
①點在平面內的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設,則由可得,然后對應邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③【點睛】此題考查立體幾何中的垂直、平行關系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.橫線處任填一個都可以,面積為.【解析】
無論選哪一個,都先由正弦定理化邊為角后,由誘導公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因為,所以.從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【點睛】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進行邊角轉換,求三角形面積時,①若三角形中已知一個角(角的大小或該角的正、余弦值),結合題意求解這個角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個角的余弦值,再求其正弦值,代入公式求面積,總之,結合圖形恰當選擇面積公式是解題的關鍵.18.(2),(2),的最大整數是2.(3)存在,【解析】
(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數列,所以,化簡計算得,,從而得到數列的通項公式,再計算出,,,從而可求出數列的通項公式;(2)令,化簡計算得,從而可得數列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數列的前項和,再寫出其前()項和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當時,,即當時,①②①-②得,整理得,又因為各項均為正數的數列.故是從第二項的等差數列,公差為2.又恰為等比數列的前3項,故,解得.又,故,因為也成立.故是以為首項,2為公差的等差數列.故.即2,4,8恰為等比數列的前3項,故是以為首項,公比為的等比數列,故.綜上,(2)令,則所以數列是遞增的,若對均滿足,只要的最小值大于即可因為的最小值為,所以,所以的最大整數是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數列,【點睛】此題考查了等差數列與等比數列的通項公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.19.(Ⅰ),;(Ⅱ)詳見解析.【解析】
(Ⅰ)根據概率的性質知所有矩形的面積之和等于列式可解得;(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數為,不獲獎的人數為,從而可得列聯表,再計算出,與臨界值比較可得.【詳解】解:(Ⅰ),.(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數為,不獲獎的人數為,列聯表如下:女生男生總計獲獎不獲獎總計因為,所以在犯錯誤的概率不超過的前提下能認為“獲獎與女生,男生有關.”【點睛】本題主要考查獨立性檢驗,以及由頻率分布直方圖求平均數的問題,熟記獨立性檢驗的思想,以及平均數的計算方法即可,屬于常考題型.20.(1)單調遞增區間為,單調遞減區間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結合即可解決.【詳解】(1),當時,,遞增,當時,,遞減.故的單調遞增區間為,單調遞減區間為.(2),,,設的根為,即有可得,,當時,,遞減,當時,,遞增.,所以,①當;②當時,設,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 昆明鐵道職業技術學院《自然科學》2023-2024學年第二學期期末試卷
- 浙江省杭州市建德市2024-2025學年三下數學期末統考模擬試題含解析
- 湖北醫藥學院《項目前分析和項目分析》2023-2024學年第二學期期末試卷
- 武漢文理學院《生物信息學分析實踐》2023-2024學年第二學期期末試卷
- 寧夏職業技術學院《遙感與信息技術》2023-2024學年第二學期期末試卷
- 遼寧軌道交通職業學院《文學經典與語文教學》2023-2024學年第二學期期末試卷
- 樂山職業技術學院《醫用近代儀器分析》2023-2024學年第二學期期末試卷
- 攀枝花學院《廣播電視經營與管理》2023-2024學年第二學期期末試卷
- 江西省景德鎮市2025屆初三“停課不停學”階段性檢測試題生物試題含解析
- 蘭州信息科技學院《建設監理》2023-2024學年第二學期期末試卷
- 失信應急和響應演練記錄
- 第一單元字詞過關專題卷-2022-2023學年語文五年級下冊(部編版)
- 醫院反恐知識課件
- 唱給小蘿卜頭的歌
- 新型電力系統簡介演示
- 傳統戲曲的角色扮演與表演藝術
- 支架法現澆連續梁(高速鐵路橋梁施工)
- 反家庭暴力法演示課件
- 降低重癥患者crrt相關低體溫發生率的pdca 模板
- 消費者起訴狀模板范文
- (完整版)外科護理學知識點整理
評論
0/150
提交評論