




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北省宜昌市秭歸縣第二高級中學高三下學期考試數學試題理試題分類匯編請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調遞增區間為()A. B.C. D.2.將函數的圖象向左平移個單位長度,得到的函數為偶函數,則的值為()A. B. C. D.3.已知是偶函數,在上單調遞減,,則的解集是A. B.C. D.4.已知是函數的極大值點,則的取值范圍是A. B.C. D.5.已知函數,若關于的方程有且只有一個實數根,則實數的取值范圍是()A. B.C. D.6.已知函數.設,若對任意不相等的正數,,恒有,則實數a的取值范圍是()A. B.C. D.7.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側面積為8.若滿足,且目標函數的最大值為2,則的最小值為()A.8 B.4 C. D.69.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種10.已知復數(為虛數單位),則下列說法正確的是()A.的虛部為 B.復數在復平面內對應的點位于第三象限C.的共軛復數 D.11.在復平面內,復數(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉的角為,則,法國數學家棣莫弗發現了棣莫弗定理:,,則,由棣莫弗定理可以導出復數乘方公式:,已知,則()A. B.4 C. D.1612.已知集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為偶函數,且當時,;當時,.關于函數的零點,有下列三個命題:①當時,存在實數m,使函數恰有5個不同的零點;②若,函數的零點不超過4個,則;③對,,函數恰有4個不同的零點,且這4個零點可以組成等差數列.其中,正確命題的序號是_______.14.設,若函數有大于零的極值點,則實數的取值范圍是_____15.若函數在和上均單調遞增,則實數的取值范圍為________.16.為了抗擊新型冠狀病毒肺炎,某醫藥公司研究出一種消毒劑,據實驗表明,該藥物釋放量與時間的函數關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過______分鐘人方可進入房間.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數為,求的分布列和數學期望;(2)證明:數列是等比數列;(3)求甲在登山過程中,恰好登上第級臺階的概率.18.(12分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優秀傳統文化中的動漫題材,創作出一批又一批的優秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關于年份代號的統計數據如下表(已知該公司的年利潤與年份代號線性相關).年份年份代號年利潤(單位:億元)(Ⅰ)求關于的線性回歸方程,并預測該公司年(年份代號記為)的年利潤;(Ⅱ)當統計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預測的該公司年的年利潤視作該年利潤的實際值,現從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.19.(12分)設復數滿足(為虛數單位),則的模為______.20.(12分)某公司打算引進一臺設備使用一年,現有甲、乙兩種設備可供選擇.甲設備每臺10000元,乙設備每臺9000元.此外設備使用期間還需維修,對于每臺設備,一年間三次及三次以內免費維修,三次以外的維修費用均為每次1000元.該公司統計了曾使用過的甲、乙各50臺設備在一年間的維修次數,得到下面的頻數分布表,以這兩種設備分別在50臺中的維修次數頻率代替維修次數發生的概率.維修次數23456甲設備5103050乙設備05151515(1)設甲、乙兩種設備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數學期望為決策依據,希望設備購買和一年間維修的花費總額盡量低,且維修次數盡量少,則需要購買哪種設備?請說明理由.21.(12分)在中,內角所對的邊分別為,已知,且.(I)求角的大小;(Ⅱ)若,求面積的取值范圍.22.(10分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數量(單位:個)隨溫度(單位:℃)變化的規律,收集數據如下:溫度/℃14161820222426繁殖數量/個2530385066120218對數據進行初步處理后,得到了一些統計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據散點圖判斷與哪一個更適合作為該種細菌的繁殖數量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(1)的判斷結果及表格數據,建立關于的回歸方程(結果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數量的預報值為多少?參考公式:對于一組數據,其回歸直線的斜率和截距的最小二成估計分別為,,參考數據:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先由函數的周期和圖象的平移后的函數的圖象性質得出函數的解析式,從而得出的解析式,再根據正弦函數的單調遞增區間得出函數的單調遞增區間,可得選項.【詳解】因為函數的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區間是:,,由,,得:,,所以函數的單調遞增區間為().故選:D.【點睛】本題主要考查正弦型函數的周期性,對稱性,單調性,圖象的平移,在進行圖象的平移時,注意自變量的系數,屬于中檔題.2、D【解析】
利用三角函數的圖象變換求得函數的解析式,再根據三角函數的性質,即可求解,得到答案.【詳解】將將函數的圖象向左平移個單位長度,可得函數又由函數為偶函數,所以,解得,因為,當時,,故選D.【點睛】本題主要考查了三角函數的圖象變換,以及三角函數的性質的應用,其中解答中熟記三角函數的圖象變換,合理應用三角函數的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、D【解析】
先由是偶函數,得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數,所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數的性質解對應不等式,熟記函數的奇偶性、對稱性、單調性等性質即可,屬于常考題型.4、B【解析】
方法一:令,則,,當,時,,單調遞減,∴時,,,且,∴,即在上單調遞增,時,,,且,∴,即在上單調遞減,∴是函數的極大值點,∴滿足題意;當時,存在使得,即,又在上單調遞減,∴時,,所以,這與是函數的極大值點矛盾.綜上,.故選B.方法二:依據極值的定義,要使是函數的極大值點,須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據與的圖象關系,可得,故選B.5、B【解析】
利用換元法設,則等價為有且只有一個實數根,分三種情況進行討論,結合函數的圖象,求出的取值范圍.【詳解】解:設,則有且只有一個實數根.當時,當時,,由即,解得,結合圖象可知,此時當時,得,則是唯一解,滿足題意;當時,此時當時,,此時函數有無數個零點,不符合題意;當時,當時,,此時最小值為,結合圖象可知,要使得關于的方程有且只有一個實數根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數方程根的個數的應用.利用換元法,數形結合是解決本題的關鍵.6、D【解析】
求解的導函數,研究其單調性,對任意不相等的正數,構造新函數,討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數a的取值范圍是故選:D.【點睛】此題考查含參函數研究單調性問題,根據參數范圍化簡后構造新函數轉換為含參恒成立問題,屬于一般性題目.7、C【解析】
根據三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.8、A【解析】
作出可行域,由,可得.當直線過可行域內的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當直線過可行域內的點時,最大,即最大,最大值為2.解方程組,得..,當且僅當,即時,等號成立.的最小值為8.故選:.【點睛】本題考查簡單的線性規劃,考查基本不等式,屬于中檔題.9、D【解析】
采取分類計數和分步計數相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題10、D【解析】
利用的周期性先將復數化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數為,C錯誤;,D正確.故選:D.【點睛】本題考查復數的四則運算,涉及到復數的虛部、共軛復數、復數的幾何意義、復數的模等知識,是一道基礎題.11、D【解析】
根據復數乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復數的新定義題目、同時考查了復數模的求法,解題的關鍵是理解棣莫弗定理,將復數化為棣莫弗定理形式,屬于基礎題.12、B【解析】
求出集合,利用集合的基本運算即可得到結論.【詳解】由,得,則集合,所以,.故選:B.【點睛】本題主要考查集合的基本運算,利用函數的性質求出集合是解決本題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】
根據偶函數的圖象關于軸對稱,利用已知中的條件作出偶函數的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當時又因為為偶函數可畫出的圖象,如下所示:可知當時有5個不同的零點;故①正確;若,函數的零點不超過4個,即,與的交點不超過4個,時恒成立又當時,在上恒成立在上恒成立由于偶函數的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數方程思想,數形結合思想,屬于難題.14、【解析】
先求導數,求解導數為零的根,結合根的分布求解.【詳解】因為,所以,令得,因為函數有大于0的極值點,所以,即.【點睛】本題主要考查利用導數研究函數的極值點問題,極值點為導數的變號零點,側重考查轉化化歸思想.15、【解析】
化簡函數,求出在上的單調遞增區間,然后根據在和上均單調遞增,列出不等式求解即可.【詳解】由知,當時,在和上單調遞增,在和上均單調遞增,,
,
的取值范圍為:.
故答案為:.【點睛】本題主要考查了三角函數的圖象與性質,關鍵是根據函數的單調性列出關于m的方程組,屬中檔題.16、240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數學期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數列.(3)由(2)可得.18、(Ⅰ),該公司年年利潤的預測值為億元;(Ⅱ).【解析】
(Ⅰ)求出和的值,將表格中的數據代入最小二乘法公式,求得和的值,進而可求得關于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤的估計值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計算出從年至年這年被評為級利潤年的年數,然后利用組合計數原理結合古典概型的概率可得出所求事件的概率.【詳解】(Ⅰ)根據表中數據,計算可得,,,又,,,關于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤的預測值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤的估計值分別為、、、、、、、(單位:億元),其中實際利潤大于相應估計值的有年.故這年中被評為級利潤年的有年,評為級利潤年的有年.記“從年至年這年的年利潤中隨機抽取年,恰有年為級利潤年”的概率為,.【點睛】本題考查利用最小二乘法求回歸直線方程,同時也考查了古典概型概率的計算,涉及組合計數原理的應用,考查計算能力,屬于中等題.19、1【解析】
整理已知利用復數的除法運算方式計算,再由求模公式得答案.【詳解】因為,即所以的模為1故答案為:1【點睛】本題考查復數的除法運算與求模,屬于基礎題.20、(1)分布列見解析,分布列見解析;(2)甲設備,理由見解析【解析】
(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,12000,計算概率得到分布列;(2)計算期望,得到,設甲、乙兩設備一年內的維修次數分別為,,計算分布列,計算數學
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣東廣州市海珠區保安服務有限公司招聘筆試參考題庫附帶答案詳解
- 2025年廣東大唐國際雷州發電有限責任公司招聘筆試參考題庫附帶答案詳解
- 2025年浙江寧波海曙鄉旅投資開發有限公司招聘筆試參考題庫含答案解析
- 母豬護理標準及規范試題及答案
- 醫學知識考試復習指南試題及答案
- 全科助理醫師考試核心主題試題及答案結合
- 癲癇填空考試試題及答案
- 深入解析育嬰師相關法規試題及答案
- 最佳復習方案2025年公共營養師考試試題及答案
- 家政結業考試題及答案
- 遠離手機班會課件
- 2019最新中小學校安全管理制度匯編
- 心理治療師考試復習重點筆記匯總
- 《中西醫結合概論》期末考試題
- 高速鐵路知識.ppt課件
- 吹灰器檢修三措兩案
- ROHS等有害物質削減計劃
- 產品推介會策劃方案
- sch壁厚等級對照表要點
- 石頭峽水電站水利樞紐工程壩體設計說明書畢業設計
- 淺談石油化工建設項目的工程造價管理與控制
評論
0/150
提交評論