




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省會理縣第一中學高三下學期期中統一考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.2.已知焦點為的拋物線的準線與軸交于點,點在拋物線上,則當取得最大值時,直線的方程為()A.或 B.或 C.或 D.3.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.4.設,且,則()A. B. C. D.5.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.6.函數()的圖象的大致形狀是()A. B. C. D.7.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.38.將函數圖象上所有點向左平移個單位長度后得到函數的圖象,如果在區間上單調遞減,那么實數的最大值為()A. B. C. D.9.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.10.下列命題為真命題的個數是()(其中,為無理數)①;②;③.A.0 B.1 C.2 D.311.已知等差數列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內角為,若對任意的恒成立,則實數().A.6 B.5 C.4 D.312.若函數的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在區間內任意取一個數,則恰好為非負數的概率是________.14.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內投入一質點,質點落入陰影部分的概率是_____________15.設定義域為的函數滿足,則不等式的解集為__________.16.已知,且,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發公共衛生事件.中華民族歷史上經歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數據統計中發現,從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數量(單位:萬人)之間的關系如下表:日期1234567全國累計報告確診病例數量(萬人)1.41.72.02.42.83.13.5(1)根據表中的數據,運用相關系數進行分析說明,是否可以用線性回歸模型擬合與的關系?(2)求出關于的線性回歸方程(系數精確到0.01).并預測2月10日全國累計報告確診病例數.參考數據:,,,.參考公式:相關系數回歸方程中斜率和截距的最小二乘估計公式分別為:,.18.(12分)已知函數,函數.(Ⅰ)判斷函數的單調性;(Ⅱ)若時,對任意,不等式恒成立,求實數的最小值.19.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設,求三棱錐的體積.20.(12分)為貫徹十九大報告中“要提供更多優質生態產品以滿足人民日益增長的優美生態環境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監測培育的某種植物的生長情況.現分別從、、三塊試驗田中各隨機抽取株植物測量高度,數據如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數據的平均數記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數據與表格中的所有數據構成的新樣本的平均數記為,試比較和的大小.(結論不要求證明)21.(12分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無底薪,單以內(含單)的部分送餐員每單抽成元,超過單的部分送餐員每單抽成元.現從這兩家公司各隨機選取一名送餐員,分別記錄其天的送餐單數,得到如下頻數分布表:送餐單數3839404142甲公司天數101015105乙公司天數101510105(1)從記錄甲公司的天送餐單數中隨機抽取天,求這天的送餐單數都不小于單的概率;(2)假設同一公司的送餐員一天的送餐單數相同,將頻率視為概率,回答下列兩個問題:①求乙公司送餐員日工資的分布列和數學期望;②小張打算到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,小張應選擇哪家公司應聘?說明你的理由.22.(10分)在平面直角坐標系中,已知直線的參數方程為(為參數),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現了數學運算、直觀想象等核心素養.2.A【解析】
過作與準線垂直,垂足為,利用拋物線的定義可得,要使最大,則應最大,此時與拋物線相切,再用判別式或導數計算即可.【詳解】過作與準線垂直,垂足為,,則當取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關系,涉及到拋物線的定義,考查學生轉化與化歸的思想,是一道中檔題.3.C【解析】
先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.4.C【解析】
將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數方程,恒等變化后根據的關系即可求解,屬于簡單題目.5.A【解析】
由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.6.C【解析】
對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點睛】識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數模型法:由所提供的圖象特征,聯想相關函數模型,利用這一函數模型來分析解決問題.7.C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;8.B【解析】
根據條件先求出的解析式,結合三角函數的單調性進行求解即可.【詳解】將函數圖象上所有點向左平移個單位長度后得到函數的圖象,則,設,則當時,,,即,要使在區間上單調遞減,則得,得,即實數的最大值為,故選:B.【點睛】本小題主要考查三角函數圖象變換,考查根據三角函數的單調性求參數,屬于中檔題.9.C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關鍵是得到該幾何體的形狀.10.C【解析】
對于①中,根據指數冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數,利用導數得到函數為單調遞增函數,進而得到,即可判定是錯誤的;對于③中,構造新函數,利用導數求得函數的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據不等式的性質,可得成立,所以是正確的;對于②中,設函數,則,所以函數為單調遞增函數,因為,則又由,所以,即,所以②不正確;對于③中,設函數,則,當時,,函數單調遞增,當時,,函數單調遞減,所以當時,函數取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數在函數中的綜合應用,其中解答中根據題意,合理構造新函數,利用導數求得函數的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.11.C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【點睛】本題考查等差數列前n項和的最值問題,考查學生的計算能力,是一道基礎題.12.D【解析】
由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數,利用導數研究函數單調性,分析即得解【詳解】函數的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數研究函數的零點,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先分析非負數對應的區間長度,然后根據幾何概型中的長度模型,即可求解出“恰好為非負數”的概率.【詳解】當是非負數時,,區間長度是,又因為對應的區間長度是,所以“恰好為非負數”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關鍵是能判斷出目標事件對應的區間長度.14.【解析】
聯立直線與拋物線方程求出交點坐標,再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據幾何概型的概率公式計算可得;【詳解】解:聯立解得或,即,,,,,故答案為:【點睛】本題考查幾何概型的概率公式的應用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.15.【解析】
根據條件構造函數F(x),求函數的導數,利用函數的單調性即可得到結論.【詳解】設F(x),則F′(x),∵,∴F′(x)>0,即函數F(x)在定義域上單調遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點睛】本題主要考查函數單調性的判斷和應用,根據條件構造函數是解決本題的關鍵.16.【解析】試題分析:因,故,所以,,應填.考點:三角變換及運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)可以用線性回歸模型擬合與的關系;(2),預測2月10日全國累計報告確診病例數約有4.5萬人.【解析】
(1)根據已知數據,利用公式求得,再根據的值越大說明它們的線性相關性越高來判斷.(2)由(1)的相關數據,求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數據得,,,所以,,所以.因為與的相關近似為0.99,說明它們的線性相關性相當高,從而可以用線性回歸模型擬合與的關系.(2)由(1)得,,,所以,關于的回歸方程為:,2月10日,即代入回歸方程得:.所以預測2月10日全國累計報告確診病例數約有4.5萬人.【點睛】本題主要考查線性回歸分析和回歸方程的求解及應用,還考查了運算求解的能力,屬于中檔題.18.(1)故函數在上單調遞增,在上單調遞減;(2).【解析】試題分析:(Ⅰ)根據題意得到的解析式和定義域,求導后根據導函數的符號判斷單調性.(Ⅱ)分析題意可得對任意,恒成立,構造函數,則有對任意,恒成立,然后通過求函數的最值可得所求.試題解析:(I)由題意得,,∴.當時,,函數在上單調遞增;當時,令,解得;令,解得.故函數在上單調遞增,在上單調遞減.綜上,當時,函數在上單調遞增;當時,函數在上單調遞增,在上單調遞減.(II)由題意知.,當時,函數單調遞增.不妨設,又函數單調遞減,所以原問題等價于:當時,對任意,不等式恒成立,即對任意,恒成立.記,由題意得在上單調遞減.所以對任意,恒成立.令,,則在上恒成立.故,而在上單調遞增,所以函數在上的最大值為.由,解得.故實數的最小值為.19.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)取中點,連,,根據平行四邊形,可得,進而證得平面平面,利用面面垂直的性質,得平面,又由,即可得到平面.(Ⅱ)根據三棱錐的體積公式,利用等積法,即可求解.【詳解】(Ⅰ)取中點,連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點,則,而平面平面,而,∴平面.(Ⅱ)根據三棱錐的體積公式,得.【點睛】本題主要考查了空間中線面位置關系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關系的判定定理和性質定理,以及合理利用“等體積法”求解是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.20.(1);(2);(3).【解析】
設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結果;(2)設事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據題意直接判斷和的大小即可.【詳解】設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設事件為“甲的高度大于乙的高度”.由題意知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產招標合同
- 開業慶典服務合同
- 農村畜牧養殖責任劃分合同
- 農業生態園區開發合同
- 《伸出愛的手》關心你愛護他課件-4
- 農場投資養殖合同范本
- 數據資產價值評價指標分析-2024
- 道路景觀施工合同范本
- 簡單商品租賃合同范本
- 個人門禁維修合同范本
- 2022版義務教育語文課程標準(2022版含新增和修訂部分)
- 色譜、質譜、聯用
- 獨生子女父母退休一次性獎勵審批1
- 鋁合金窗陜西銀杉節能門窗有限責任公司鋁合金制作及安裝工藝流程圖
- 蘇教版小學數學四年級下冊《圖形旋轉》練習題
- 燒結普通磚、多孔磚回彈計算
- 2022年度英語希望之星風采大賽即興問答題庫小學組
- 結構化面試技巧(完整版).ppt
- 抗病毒藥物在豬病臨床生產中的應用
- 抗高血壓藥物臨床試驗技術指導原則(第二稿)
- 基于PLC的智能溫室控制系統設計
評論
0/150
提交評論