江西省五市八校2023-2024學年高考數學必刷試卷含解析_第1頁
江西省五市八校2023-2024學年高考數學必刷試卷含解析_第2頁
江西省五市八校2023-2024學年高考數學必刷試卷含解析_第3頁
江西省五市八校2023-2024學年高考數學必刷試卷含解析_第4頁
江西省五市八校2023-2024學年高考數學必刷試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省五市八校2023-2024學年高考數學必刷試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,滿足條件(為常數),若目標函數的最大值為9,則()A. B. C. D.2.已知,,,則,,的大小關系為()A. B. C. D.3.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變4.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.5.記等差數列的公差為,前項和為.若,,則()A. B. C. D.6.已知集合,集合,若,則()A. B. C. D.7.學業水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人8.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.49.已知等比數列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.10.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.11.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.12.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值二、填空題:本題共4小題,每小題5分,共20分。13.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養了此種盆栽植物10株,設為其中成活的株數,若的方差,,則________.14.已知,,,則的最小值是__.15.的展開式中,的系數為_______(用數字作答).16.記Sk=1k+2k+3k+……+nk,當k=1,2,3,……時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測,A﹣B=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐E﹣ABCD的側棱DE與四棱錐F﹣ABCD的側棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設平面ABF與平面CDF所成的二面角為θ,求.18.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構成的四邊形的面積為.(1)求橢圓C的標準方程:(2)設A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.19.(12分)已知函數.(1)若,且,求證:;(2)若時,恒有,求的最大值.20.(12分)如圖,在矩形中,,,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.21.(12分)聯合國糧農組織對某地區最近10年的糧食需求量部分統計數據如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數據可知,年需求量與年份之間具有線性相關關系,我們以“年份—2014”為橫坐標,“需求量”為縱坐標,請完成如下數據處理表格:年份—20140需求量—2570(2)根據回歸直線方程分析,2020年聯合國糧農組織計劃向該地區投放糧食300萬噸,問是否能夠滿足該地區的糧食需求?參考公式:對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.22.(10分)已知集合,.(1)若,則;(2)若,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由目標函數的最大值為9,我們可以畫出滿足條件件為常數)的可行域,根據目標函數的解析式形式,分析取得最優解的點的坐標,然后根據分析列出一個含參數的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數)可行域如下圖:由于目標函數的最大值為9,可得直線與直線的交點,使目標函數取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數,我們可以先畫出不含參數的幾個不等式對應的平面區域,分析取得最優解是哪兩條直線的交點,然后得到一個含有參數的方程(組,代入另一條直線方程,消去,后,即可求出參數的值.2、D【解析】

構造函數,利用導數求得的單調區間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數求函數的單調區間,考查化歸與轉化的數學思想方法,考查對數式比較大小,屬于中檔題.3、C【解析】

根據線面平行與垂直的判定與性質逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.4、D【解析】

整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.5、C【解析】

由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.6、A【解析】

根據或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.7、D【解析】

根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變為:物理化學對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.8、D【解析】

利用導數的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數的幾何意義,考查運算求解能力,是基礎題9、C【解析】

在等比數列中,由即可表示之間的關系.【詳解】由題可知,等比數列中,且公比為2,故故選:C【點睛】本題考查等比數列求和公式的應用,屬于基礎題.10、A【解析】

由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.11、B【解析】

先判斷命題的真假,進而根據復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.12、D【解析】

A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.14、.【解析】

因為,展開后利用基本不等式,即可得到本題答案.【詳解】由,得,所以,當且僅當,取等號.故答案為:【點睛】本題主要考查利用基本不等式求最值,考查學生的轉化能力和運算求解能力.15、60【解析】

根據二項式定理展開式通項,即可求得的系數.【詳解】因為,所以,則所求項的系數為.故答案為:60【點睛】本題考查了二項展開式通項公式的應用,指定項系數的求法,屬于基礎題.16、【解析】

觀察知各等式右邊各項的系數和為1,最高次項的系數為該項次數的倒數,據此計算得到答案.【詳解】根據所給的已知等式得到:各等式右邊各項的系數和為1,最高次項的系數為該項次數的倒數,∴A,A1,解得B,所以A﹣B.故答案為:.【點睛】本題考查了歸納推理,意在考查學生的推理能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)根據線面垂直的性質定理,可得DE//BF,然后根據勾股定理計算可得BF=DE,最后利用線面平行的判定定理,可得結果.(2)利用建系的方法,可得平面ABF的一個法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關系,可得結果.【詳解】(1)因為DE⊥平面ABCD,所以DEAD,因為AD=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以DE//BF,又BF=DE,所以平行四邊形BEDF,故DF//BE,因為BE平面BCE,DF平面BCE所以DF//平面BCE;(2)建立如圖空間直角坐標系,則D(0,0,0),A(4,0,0),C(0,4,0),F(4,3,﹣3),,設平面CDF的法向量為,由,令x=3,得,易知平面ABF的一個法向量為,所以,故.【點睛】本題考查線面平行的判定以及利用建系方法解決面面角問題,屬基礎題.18、(1);(2)①證明見解析;②證明見解析【解析】

(1)解方程即可;(2)①設直線,,,將點的坐標用表示,證明即可;②分別用表示,,的面積即可.【詳解】(1)解之得:的標準方程為:(2)①,,設直線代入橢圓方程:設,,,直線,直線,,,,,.②,所以.【點睛】本題考查了直接法求橢圓的標準方程、直線與橢圓位置關系中的定值問題,在處理此類問題一般要涉及根與系數的關系,本題思路簡單,但計算量比較大,是一道有一定難度的題.19、(1)見解析;(2).【解析】

(1)利用導數分析函數的單調性,并設,則,,將不等式等價轉化為證明,構造函數,利用導數分析函數在區間上的單調性,通過推導出來證得結論;(2)構造函數,對實數分、、,利用導數分析函數的單調性,求出函數的最小值,再通過構造新函數,利用導數求出函數的最大值,可得出的最大值.【詳解】(1),,所以,函數單調遞增,所以,當時,,此時,函數單調遞減;當時,,此時,函數單調遞增.要證,即證.不妨設,則,,下證,即證,構造函數,,所以,函數在區間上單調遞增,,,即,即,,且函數在區間上單調遞增,所以,即,故結論成立;(2)由恒成立,得恒成立,令,則.①當時,對任意的,,函數在上單調遞增,當時,,不符合題意;②當時,;③當時,令,得,此時,函數單調遞增;令,得,此時,函數單調遞減...令,設,則.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,函數在處取得最大值,即.因此,的最大值為.【點睛】本題考查利用導數證明不等式,同時也考查了利用導數求代數式的最值,構造新函數是解答的關鍵,考查推理能力,屬于難題.20、(1)見解析;(2)【解析】

(1)取的中點,連接,,由,進而,由,得.進而平面,進而結論可得證(2)(方法一)過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點,上的點,使,連接,得,,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點,連接,,由已知得,所以,又點是的中點,所以.因為,點是線段的中點,所以.又因為,所以,從而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,則點,,,,所以,,.設平面的法向量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論