青海省大通回族土族自治縣第一中學2025年高三下學期開學檢測試題(線上)數學試題_第1頁
青海省大通回族土族自治縣第一中學2025年高三下學期開學檢測試題(線上)數學試題_第2頁
青海省大通回族土族自治縣第一中學2025年高三下學期開學檢測試題(線上)數學試題_第3頁
青海省大通回族土族自治縣第一中學2025年高三下學期開學檢測試題(線上)數學試題_第4頁
青海省大通回族土族自治縣第一中學2025年高三下學期開學檢測試題(線上)數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

青海省大通回族土族自治縣第一中學2025年高三下學期開學檢測試題(線上)數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現象.為考察共享經濟對企業經濟活躍度的影響,在四個不同的企業各取兩個部門進行共享經濟對比試驗,根據四個企業得到的試驗數據畫出如下四個等高條形圖,最能體現共享經濟對該部門的發展有顯著效果的圖形是()A. B.C. D.2.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.3.半徑為2的球內有一個內接正三棱柱,則正三棱柱的側面積的最大值為()A. B. C. D.4.若函數在處取得極值2,則()A.-3 B.3 C.-2 D.25.已知某批零件的長度誤差(單位:毫米)服從正態分布,從中隨機取一件,其長度誤差落在區間(3,6)內的概率為()(附:若隨機變量ξ服從正態分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%6.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是()A. B. C. D.7.一袋中裝有個紅球和個黑球(除顏色外無區別),任取球,記其中黑球數為,則為()A. B. C. D.8.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.9.在中,,,,則邊上的高為()A. B.2 C. D.10.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.11.如圖所示,網絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.812.已知正四棱錐的側棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面五邊形中,,,,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是______.14.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點,為坐標原點,若為等邊三角形,則雙曲線的離心率為______.15.已知雙曲線()的左右焦點分別為,為坐標原點,點為雙曲線右支上一點,若,,則雙曲線的離心率的取值范圍為_____.16.在的展開式中,的系數等于__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.18.(12分)已知函數,,若存在實數使成立,求實數的取值范圍.19.(12分)在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)設點,直線l與曲線C交于不同的兩點A、B,求的值.20.(12分)已知實數x,y,z滿足,證明:.21.(12分)設函數.(1)求不等式的解集;(2)若的最小值為,且,求的最小值.22.(10分)在直角坐標系中,已知圓,以原點為極點,x軸正半軸為極軸建立極坐標系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標方程;(2)過原點作兩條互相垂直的直線,其中與圓M交于O,A兩點,與圓M交于O,B兩點,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】根據四個列聯表中的等高條形圖可知,圖中D中共享與不共享的企業經濟活躍度的差異最大,它最能體現共享經濟對該部門的發展有顯著效果,故選D.2.B【解析】

通過拋物線的定義,轉化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結,當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質,直線與拋物線的位置關系,轉化思想的應用,屬于基礎題.3.B【解析】

設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.4.A【解析】

對函數求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數的導數與極值,考查了學生的運算求解能力,屬于基礎題.5.B【解析】試題分析:由題意故選B.考點:正態分布6.A【解析】

先分別判斷每一個命題的真假,再利用復合命題的真假判斷確定答案即可.【詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當時,沒有零點,所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點睛】本題主要考查充要條件的判斷和兩直線的位置關系,考查二次函數的圖象,考查學生對這些知識的理解掌握水平.7.A【解析】

由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數學期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數學期望為.故選:A.【點睛】本題考查隨機變量數學期望的計算,考查計算能力,屬于基礎題.8.B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.9.C【解析】

結合正弦定理、三角形的內角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內角和定理、兩角和的正弦公式,屬于中檔題.10.C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.11.A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.12.C【解析】試題分析:設的交點為,連接,則為所成的角或其補角;設正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結合三角形的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質可知,直線與的交點為幾何體外接球的球心,取的中點,連接,,由條件得,,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結構特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結構特征,求得外接球的半徑是解答的關鍵,著重考查了空間想象能力與運算求解能力,屬于中檔試題.14.2【解析】

根據為等邊三角形建立的關系式,從而可求離心率.【詳解】據題設分析知,,所以,得,所以雙曲線的離心率.【點睛】本題主要考查雙曲線的離心率的求解,根據條件建立之間的關系式是求解的關鍵,側重考查數學運算的核心素養.15.【解析】

法一:根據直角三角形的性質和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關于的式子,再令,則,令對函數求導研究函數在上單調性,可求得離心率的范圍.法二:令,,,,,根據直角三角形的性質和勾股定理得,將離心率表示成關于角的三角函數,根據三角函數的恒等變化轉化為關于的函數,可求得離心率的范圍.【詳解】法一:,,,,,,設,則,令,所以時,,在上單調遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點睛】本題考查求雙曲線的離心率的范圍的問題,關鍵在于將已知條件轉化為與雙曲線的有關,從而將離心率表示關于某個量的函數,屬于中檔題.16.7【解析】

由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數.故答案為:7【點睛】本題主要考查二項式定理的應用,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點:用空間向量法證垂直、求二面角.18.【解析】試題分析:先將問題“存在實數使成立”轉化為“求函數的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數的取值范圍是.考點:柯西不等式即運用和轉化與化歸的數學思想的運用.19.(1),(2)【解析】

(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數即可得到直線的直角坐標方程;(2)由于在直線上,寫出直線的標準參數方程參數方程,代入曲線的方程利用參數的幾何意義即可得出求解即可.【詳解】(1)直線的普通方程為,即,根據極坐標與直角坐標之間的相互轉化,,,而,則,即,故直線l的普通方程為,曲線C的直角坐標方程(2)點在直線l上,且直線的傾斜角為,可設直線的參數方程為:(t為參數),代入到曲線C的方程得,,,由參數的幾何意義知.【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思想、直線的參數方程中的參數的幾何意義是解題的關鍵,難度一般.20.見解析【解析】

已知條件,需要證明的是,要想利用柯西不等式,需要的值,發現,則可以用柯西不等式.【詳解】,.由柯西不等式得,...【點睛】本題考查柯西不等式的應用,屬于基礎題.21.(1)或(2)最小值為.【解析】

(1)討論,,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當時,由,解得;當時,由,解得;當時,由,解得.所以所求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論