




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一、選擇題的解法
1、直接法:根據(jù)選擇題的題設(shè)條件,通過計(jì)算、推理或判斷,,
最后得到題目的所求。
2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字
母的取值范圍有關(guān);
在解這類選擇題時(shí),可以考慮從取值范圍內(nèi)選取某幾個(gè)特殊值,代
入原命題進(jìn)行驗(yàn)證,然后淘汰錯(cuò)誤的,保留正確的。
3、淘汰法:把題目所給的四個(gè)結(jié)論逐一代回原題的題干中進(jìn)行驗(yàn)
證,把錯(cuò)誤的淘汰掉,直至找到正確的答案。
4、逐步淘汰法:如果我們在計(jì)算或推導(dǎo)的過程中不是一步到位,而
是逐步進(jìn)行,既采用"走一走、瞧一瞧”的策略;
每走一步都與四個(gè)結(jié)論比較一次,淘汰掉不可能的,這樣也許走不
到最后一步,三個(gè)錯(cuò)誤的結(jié)論就被全部淘汰掉了。
5、數(shù)形結(jié)合法:根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分
析其代數(shù)含義,又揭示其幾何意義;
使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋
求解題思路,使問題得到解決。
二、常用的數(shù)學(xué)思想方法
1、數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)
系,既分析其代數(shù)含義,又揭示其幾何意義;
使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋
求解體思路,使問題得到解決。
2、聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以
相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化
的。
在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為
易,化繁為簡。
如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽
象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。
3、分類討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對象性質(zhì)的
差異,分各種不同情況予以考查;
這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種
重要的解題策略。
4、待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要
確定它,只要求出式子中待確定的字母得值就可以了。
為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定
字母的方程或方程組,然后解這個(gè)方程或方程組就使問題得到解
決。
5、配方法:就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需
要的變化。
配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方
程、討論二次函數(shù)等問題,都有重要的作用。
6、換元法:在解題過程中,把某個(gè)或某些字母的式子作為一個(gè)整
體,用一個(gè)新的字母表示,以便進(jìn)一步解決問題的一種方法。
換元法可以把一個(gè)較為復(fù)雜的式子化簡,把問題歸結(jié)為比原來更為
基本的問題,從而達(dá)到化繁為簡,化難為易的目的。
7、分析法:在研究或證明一個(gè)命題時(shí),又結(jié)論向已知條件追溯,既
從結(jié)論開始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;
則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知
條件為止,從而使命題得到證明。這種思維過程通常稱為"執(zhí)果尋因"
8、綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開
始,逐步推導(dǎo)得到結(jié)論,這種思維過程通常稱為"由因?qū)Ч?
9、演繹法:由一般到特殊的推理方法。
10、歸納法:由一般到特殊的推理方法。
11、類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的
事物,在兩個(gè)或兩類事物之間;
根據(jù)它們的某些屬性相同或相似,推出它們在其他屬性方面也可能
相同或相似的推理方法。
類比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函數(shù)、方程、不等式
常用的數(shù)學(xué)思想方法:
⑴數(shù)形結(jié)合的思想方法。
⑵待定系數(shù)法。
⑶配方法。
⑷聯(lián)系與轉(zhuǎn)化的思想。
⑸圖像的平移變換。
四、證明角的相等
1、對頂角相等。
2、角(或同角)的補(bǔ)角相等或余角相等。
3、兩直線平行,同位角相等、內(nèi)錯(cuò)角相等。
4、凡直角都相等。
5、角平分線分得的兩個(gè)角相等。
6、同一個(gè)三角形中,等邊對等角。
7、等腰三角形中,底邊上的高(或中線)平分頂角。
8、平行四邊形的對角相等。
9、菱形的每一條對角線平分一組對角。
10、等腰梯形同一底上的兩個(gè)角相等。
11、關(guān)系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相
等,則它們所對的圓心角相等。
12、圓內(nèi)接四邊形的任何一個(gè)外角都等于它的內(nèi)對角。
13、同弧或等弧所對的圓周角相等。
14、弦切角等于它所夾的弧對的圓周角。
15、同圓或等圓中,如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦
切角也相等。
16、全等三角形的對應(yīng)角相等。
17、相似三角形的對應(yīng)角相等。
18、利用等量代換。
19、利用代數(shù)或三角計(jì)算出角的度數(shù)相等
20、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相
等,并且這一點(diǎn)和圓心的連線平分兩條切線的夾角。
五、證明直線的平行或垂直
1、證明兩條直線平行的主要依據(jù)和方法:
⑴、定義、在同一平面內(nèi)不相交的兩條直線平行。
⑵、平行定理、兩條直線都和第三條直線平行,這兩條直線也互相
平行。
⑶、平行線的判定:同位角相等(內(nèi)錯(cuò)角或同旁內(nèi)角),兩直線平
行。
⑷、平行四邊形的對邊平行。
⑸、梯形的兩底平行。
⑹、三角形(或梯形)的中位線平行與第三邊(或兩底)
⑺、一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段
成比例,則這條直線平行于三角形的第三邊。
2、證明兩條直線垂直的主要依據(jù)和方法:
⑴、兩條直線相交所成的四個(gè)角中,由一個(gè)是直角時(shí),這兩條直線
互相垂直。
⑵、直角三角形的兩直角邊互相垂直。
⑶、三角形的兩個(gè)銳角互余,則第三個(gè)內(nèi)角為直角。
⑷、三角形一邊的中線等于這邊的一半,則這個(gè)三角形為直角三角
形。
⑸、三角形一邊的平方等于其他兩邊的平方和,則這邊所對的內(nèi)角
為直角。
⑹、三角形(或多邊形)一邊上的高垂直于這邊。
⑺、等腰三角形的頂角平分線(或底邊上的中線)垂直于底邊。
⑻、矩形的兩臨邊互相垂直。
⑼、菱形的對角線互相垂直。
(io),平分弦(非直徑)的直徑垂直于這條弦,或平分弦所對的弧的
直徑垂直于這條弦。
Qi)、半圓或直徑所對的圓周角是直角。
(12)、圓的切線垂直于過切點(diǎn)的半徑。
(13)、相交兩圓的連心線垂直于兩圓的公共弦。
六、證明線段的比例式或等積式的主要依據(jù)和方法:
1、比例線段的定義。
2、平行線分線段成比例定理及推論。
3、平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交
的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例。
4、過分點(diǎn)作平行線;
5、相似三角形的對應(yīng)高成比例,對應(yīng)中線的比和對應(yīng)角平分線的比
都等于相似比。
6、相似三角形的周長的比等于相似比。
7、相似三角形的面積的比等于相似比的平方。
8、相似三角形的對應(yīng)邊成比例。
9、通過比例的性質(zhì)推導(dǎo)。
10、用代數(shù)、三角方法進(jìn)行計(jì)算。
11、借助等比或等線段代換。
七'幾何作圖
1、掌握最基本的五種尺規(guī)作圖
⑴、作一條線段等于已知線段。
⑵、作一個(gè)角等于已知角。
⑶、平分已知角。
⑷、經(jīng)過一點(diǎn)作已知直線的垂線。
⑸、作線段的垂直平分線。
2、掌握課本中各章要求的作圖題
⑴、根據(jù)條件作任意的三角形、等要素那角性、直角三角形。
⑵、根據(jù)給出條件作一般四邊形、平行四邊形、矩形、菱形、正方
形、梯形等。
⑶、作已知圖形關(guān)于一點(diǎn)、一條直線對稱的圖形。
⑷、會(huì)作三角形的外接圓、內(nèi)切圓。
⑸、平分已知弧。
⑹、作兩條線段的比例中項(xiàng)。
⑺、作正三角形、正四邊形、正六邊形等。
八、幾何計(jì)算
(一)、角度與弧度的計(jì)算
1、三角形和四邊形的角的計(jì)算主要依據(jù)
⑴、三角形的內(nèi)角和定理及推論。
⑵、四邊形的內(nèi)角和定理及推論。
⑶、圓內(nèi)接四邊形性質(zhì)定理。
2、弧和相關(guān)的角的計(jì)算主要依據(jù)
⑴、圓心角的度數(shù)等于它所對的弧的度數(shù)。
⑵、圓周角的度數(shù)等于它所對的弧的度數(shù)的一半。
⑶、弦切角的度數(shù)等于所夾弧度數(shù)的一半。
3、多邊形的角的計(jì)算主要依據(jù)
⑴、n邊形的內(nèi)角和=(12)*180。
⑵、正n邊形的每一內(nèi)角=(n-2)*180°+n
⑶、正n邊形的任一外角等于各邊所對的中心角且都等于
(二)、長度的計(jì)算
1、三角形、平行四邊形和梯形的計(jì)算
用到的定理主要有三角形全等定理,中位線定理,等腰三角形、
直角三角形、正三角形及各種平行四邊形的性質(zhì)等定理。關(guān)于梯形
中線段計(jì)算主要依據(jù)梯形中位線定理及等腰梯形、直角梯形的性質(zhì)
定理等。
2、有關(guān)圓的線段計(jì)算的主要依據(jù)
⑴、切線長定理
⑵、圓切線的性質(zhì)定理。
⑶、垂徑定理。
⑷、圓外切四邊形兩組對邊的和相等。
⑸、兩圓外切時(shí)圓心距等于兩圓半徑之和,兩圓內(nèi)切時(shí)圓心距等于
兩半徑之差。
3、直角三角形邊的計(jì)算
直角三角形邊長的計(jì)算應(yīng)用最廣,其理論依據(jù)主要是勾股定理和特
殊角三角形的性質(zhì)及銳角三角函數(shù)等。
4、成比例線段長度的求法
⑴、平行線分線段成比例定理;
⑵、相似形對應(yīng)線段的比等于相似比;
⑶、射影定理;
⑷、相交弦定理及推論,切割線定理及推論;
⑸、正多邊形的邊和其他線段計(jì)算轉(zhuǎn)化為特殊三角形。
(三)、圖形面積的計(jì)算
1、四邊形的面積公式
⑴、SnABCD=ah
⑵、S菱形=1/2ab(a、b為對角線)
⑶、S梯形=1/2(a+b)-h=m-h(m為中位線)
2、三角形的面積公式
⑴、SA=1/2-ah
⑵、SA=1/2-P-r(P為三角形周長,r為三角形內(nèi)切圓的半徑)
3、S正多邊形=1/2-Pnrn=1/2nanrn
4、S圓=TCR2
5、S扇形=nn=1/2LR
6、S弓形=5扇-SA
九、證明兩線段相等的方法:
⑴、利用全等三角形對應(yīng)線段相等;
⑵、利用等腰三角形性質(zhì);
⑶、利用同一個(gè)三角形中等角對等邊;
⑷、利用線段垂直平分線;
⑸、角平分線的性質(zhì);
⑹、利用軸對稱的性質(zhì);
⑺、平行線等分線段定理;
⑻、平行四邊形性質(zhì);
⑼、垂徑定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對
的兩條弧。推論1:平分一條弦所對的弧的直徑,垂直平分弦,并且
平分弦所對的另一條弧。
(10)、圓心角、弧、弦、弦心距的關(guān)系定理及推論;
(11)、切線長定理。
十、證明弧相等的方法:
⑴、定義;同圓或等圓中,能夠完全重合的兩段弧。
⑵、垂徑定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對
的兩條弧。
推論1:①平分弦(不是直徑)的直徑垂直弦,并且平分弦所對的兩
條弧。
②垂直平分一條弦的直線,經(jīng)過圓心,并且平分弦所對的兩條弧。
③平分一條弦所對的弧的直徑,垂直平分弦,并且平分弦所對的另
一條弧。
推論2:兩條平行弦所夾的弧相等
⑶、圓心角、弧、圓周角之間度數(shù)關(guān)系;(圓心角=弧=2圓周
角)
⑷、圓周角定理的推論1;(同弧或等弧所對的圓周角相等,同圓或
等圓中相等的圓周角所對的弧相等)
十一、切線小結(jié)
1、證明切線的三種方法:
⑴、定義:一個(gè)交點(diǎn);
⑵、d=r;(若一條直線到圓心的距離等于半徑,則這條直線是圓的
切線)
⑶、切線的判定定理;(經(jīng)過半徑外端,并且垂直這條半徑的直線
是圓的切線)
2、切線的八個(gè)性質(zhì):
⑴、定義:唯一交點(diǎn);
⑵、切線和圓心的距離等于半徑;(d=r)
⑶、切線的性質(zhì)定理:圓的切線垂直于過切點(diǎn)的半徑;
⑷、推論1:過圓心(且垂直于切線的直線)必過切點(diǎn);
⑸、推論2:過切點(diǎn)(且垂直于切線的直線)必過圓心;
⑹
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南省青桐鳴2024-2025學(xué)年高二下學(xué)期3月聯(lián)考 數(shù)學(xué)人教版【含答案】
- 濰坊食品科技職業(yè)學(xué)院《互動(dòng)光媒與空間》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東省臨沂市臨沂市蒙陰縣達(dá)標(biāo)名校2025年中考物理試題命題比賽模擬試卷(13)含解析
- 江西科技師范大學(xué)《萬物互聯(lián)的通信時(shí)代》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古機(jī)電職業(yè)技術(shù)學(xué)院《典型優(yōu)化問題的模型與算法》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西省臨汾市古縣2024-2025學(xué)年數(shù)學(xué)三下期末調(diào)研試題含解析
- 嘉興南洋職業(yè)技術(shù)學(xué)院《BIM技術(shù)與應(yīng)用C》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海市上外附中2024-2025學(xué)年高三第一次段考物理試題含解析
- 廈門市重點(diǎn)中學(xué)2024-2025學(xué)年招生全國統(tǒng)一考試仿真卷(十二)-高考英語試題仿真試題含解析
- 江蘇省南京玄武區(qū)重點(diǎn)中學(xué)2025屆初三英語試題下學(xué)期第一次月考試題含答案
- 《中外建筑史》課程標(biāo)準(zhǔn)
- 這個(gè)殺手不太冷解析
- 造口袋技術(shù)要求
- 國家開放大學(xué)(江西)地域文化(專)任務(wù)1-4試題及答案
- QCR 409-2017 鐵路后張法預(yù)應(yīng)力混凝土梁管道壓漿技術(shù)條件
- 南師地信培養(yǎng)方案
- 采購工作調(diào)研報(bào)告(3篇)
- 10KV高壓開關(guān)柜操作(培訓(xùn)課件PPT)
- 希爾國際商務(wù)第11版英文教材課件完整版電子教案
- 《學(xué)弈》優(yōu)質(zhì)課一等獎(jiǎng)?wù)n件
- 2023年6月大學(xué)英語四級考試真題(第1套)(含答案)
評論
0/150
提交評論