甘肅省靖遠縣2025年高三沖刺模擬數學試題試卷_第1頁
甘肅省靖遠縣2025年高三沖刺模擬數學試題試卷_第2頁
甘肅省靖遠縣2025年高三沖刺模擬數學試題試卷_第3頁
甘肅省靖遠縣2025年高三沖刺模擬數學試題試卷_第4頁
甘肅省靖遠縣2025年高三沖刺模擬數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省靖遠縣2025年高三沖刺模擬數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在中,,是上一點,若,則實數的值為()A. B. C. D.2.函數的圖象大致為A. B. C. D.3.我國古代有著輝煌的數學研究成果,其中的《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,有豐富多彩的內容,是了解我國古代數學的重要文獻.這5部專著中有3部產生于漢、魏、晉、南北朝時期.某中學擬從這5部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.4.已知函數,,若對,且,使得,則實數的取值范圍是()A. B. C. D.5.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.296.設雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.67.已知復數,為的共軛復數,則()A. B. C. D.8.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.9.已知函數有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.10.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.11.已知,其中是虛數單位,則對應的點的坐標為()A. B. C. D.12.函數(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,二、填空題:本題共4小題,每小題5分,共20分。13.若函數滿足:①是偶函數;②的圖象關于點對稱.則同時滿足①②的,的一組值可以分別是__________.14.若的展開式中只有第六項的二項式系數最大,則展開式中各項的系數和是________.15.中,角的對邊分別為,且成等差數列,若,,則的面積為__________.16.設實數x,y滿足,則點表示的區域面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.18.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.19.(12分)已知函數.(1)討論函數的極值;(2)記關于的方程的兩根分別為,求證:.20.(12分)已知函數.(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.21.(12分)在直角坐標系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.(1)求曲線的方程;(2)若點為曲線上的兩個動點,記,判斷是否存在常數使得點到直線的距離為定值?若存在,求出常數的值和這個定值;若不存在,請說明理由.22.(10分)已知的內角,,的對邊分別為,,,.(1)若,證明:.(2)若,,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由題意,可根據向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據分解的唯一性得到所求參數的方程是解答本題的關鍵,本題屬于基礎題.2、D【解析】

由題可得函數的定義域為,因為,所以函數為奇函數,排除選項B;又,,所以排除選項A、C,故選D.3、D【解析】

利用列舉法,從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結果.【詳解】《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,這5部專著中有3部產生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現象的發生.4、D【解析】

先求出的值域,再利用導數討論函數在區間上的單調性,結合函數值域,由方程有兩個根求參數范圍即可.【詳解】因為,故,當時,,故在區間上單調遞減;當時,,故在區間上單調遞增;當時,令,解得,故在區間單調遞減,在區間上單調遞增.又,且當趨近于零時,趨近于正無窮;對函數,當時,;根據題意,對,且,使得成立,只需,即可得,解得.故選:D.【點睛】本題考查利用導數研究由方程根的個數求參數范圍的問題,涉及利用導數研究函數單調性以及函數值域的問題,屬綜合困難題.5、D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D【點睛】考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.6、A【解析】

根據雙曲線的標準方程求出右頂點、右焦點的坐標,再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標,最后利用三角形的面積公式進行求解即可.【詳解】由雙曲線的標準方程可知中:,因此右頂點的坐標為,右焦點的坐標為,雙曲線的漸近線方程為:,根據雙曲線和漸近線的對稱性不妨設點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點睛】本題考查了雙曲線的漸近線方程的應用,考查了兩直線平行的性質,考查了數學運算能力.7、C【解析】

求出,直接由復數的代數形式的乘除運算化簡復數.【詳解】.故選:C【點睛】本題考查復數的代數形式的四則運算,共軛復數,屬于基礎題.8、C【解析】

根據雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據圓的性質可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質,需掌握雙曲線的漸近線求法,屬于中檔題.9、C【解析】

先求導得(),由于函數有兩個不同的極值點,,轉化為方程有兩個不相等的正實數根,根據,,,求出的取值范圍,而有解,通過分裂參數法和構造新函數,通過利用導數研究單調性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數有兩個不同的極值點,,所以方程有兩個不相等的正實數根,于是有解得.若不等式有解,所以因為.設,,故在上單調遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導數研究函數單調性、最值來求參數取值范圍,以及運用分離參數法和構造函數法,還考查分析和計算能力,有一定的難度.10、D【解析】

首先判斷循環結構類型,得到判斷框內的語句性質,然后對循環體進行分析,找出循環規律,判斷輸出結果與循環次數以及的關系,最終得出選項.【詳解】經判斷此循環為“直到型”結構,判斷框為跳出循環的語句,第一次循環:;第二次循環:;第三次循環:,此時退出循環,根據判斷框內為跳出循環的語句,,故選D.【點睛】題主要考查程序框圖的循環結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區分程序框圖是條件分支結構還是循環結構;(3)注意區分當型循環結構和直到型循環結構;(4)處理循環結構的問題時一定要正確控制循環次數;(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規定的運算方法逐次計算,直到達到輸出條件即可.11、C【解析】

利用復數相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.【點睛】本題考查復數的代數表示法及其幾何意義,考查復數相等的條件,是基礎題.12、D【解析】

由題意結合函數的圖象,求出周期,根據周期公式求出,求出,根據函數的圖象過點,求出,即可求得答案【詳解】由函數圖象可知:,函數的圖象過點,,則故選【點睛】本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數的周期、最值,代入已知點坐標求出結果二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】

根據是偶函數和的圖象關于點對稱,即可求出滿足條件的和.【詳解】由是偶函數及,可取,則,由的圖象關于點對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點睛】本題主要考查了正弦型三角函數的性質,屬于基礎題.14、【解析】

由題意得出展開式中共有11項,;再令求得展開式中各項的系數和.【詳解】由的展開式中只有第六項的二項式系數最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數和的求法,屬于基礎題.15、.【解析】

由A,B,C成等差數列得出B=60°,利用正弦定理得進而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點睛】本題考查了等差數列的性質,三角形的面積公式,考查正弦定理的應用,屬于基礎題.16、【解析】

先畫出滿足條件的平面區域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數x,y滿足表示的平面區域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用余弦定理得出關于的二次方程,結合,可求出的值;(2)利用兩角和的余弦公式以及誘導公式可求出的值,利用同角三角函數的基本關系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數的基本關系以及二倍角公式求值,考查計算能力,屬于中等題.18、(1):,直線:;(2).【解析】

(1)由消參法把參數方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數,從而可得最大值、【詳解】(1)消去參數可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標方程是;由,化為直角坐標方程為.(2)設,則,,,當時,取得最大值為.【點睛】本題考查參數方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標方程的互化.19、(1)見解析;(2)見解析【解析】

(1)對函數求導,對參數討論,得函數單調區間,進而求出極值;(2)是方程的兩根,代入方程,化簡換元,構造新函數利用函數單調性求最值可解.【詳解】(1)依題意,;若,則,則函數在上單調遞增,此時函數既無極大值,也無極小值;若,則,令,解得,故當時,,單調遞增;當時,,單調遞減,此時函數有極大值,無極小值;若,則,令,解得,故當時,,單調遞增;當時,,單調遞減,此時函數有極大值,無極小值;(2)依題意,,則,,故,;要證:,即證,即證:,即證,設,只需證:,設,則,故在上單調遞增,故,即,故.【點睛】本題考查函數極值及利用導數證明二元不等式.證明二元不等式常用方法是轉化為證明一元不等式,再轉化為函數最值問題.利用導數證明不等式的基本方法:(1)若與的最值易求出,可直接轉化為證明;(2)若與的最值不易求出,可構造函數,然后根據函數的單調性或最值,證明.20、(1)或;(2).【解析】

(1)時,分類討論,去掉絕對值,分類討論解不等式.(2)時,分類討論去絕對值,得到解析式,由函數的單調性可得的最小值,通過恒成立問題,得到關于的不等式,得到的取值范圍.【詳解】(1)因為,所以,所以不等式等價于或或,解得或.所以不等式的解集為或.(2)因為,所以,根據

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論