




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
...wd......wd...WORD格式可編輯版...wd...九年級〔上〕期末數學試卷一、選擇題〔每題3分,共30分〕1.以下車標圖案中,是中心對稱圖形的是〔〕A. B. C. D.2.一元二次方程x2=x的根是〔〕A.x=1 B.x=0 C.x1=x2 D.x1=0,x2=13.對于二次函數y=〔x﹣1〕2+2的圖象,以下說法正確的選項是〔〕A.開口向下 B.對稱軸是x=﹣1C.頂點坐標是〔1,2〕 D.與x軸有兩個交點4.一兒童行走在如以以下列圖的地板上,當他隨意停下時,最終停在地板上陰影局部的概率是〔〕A. B. C. D.5.某商品經過兩次連續降價,每件售價由原來的100元降到了64元.設平均每次降價的百分率為x,則以下方程中正確的選項是〔〕A.100〔1+x〕2=64 B.64〔1+x〕2=100 C.64〔1﹣x〕2=100 D.100〔1﹣x〕2=646.將拋物線y=x2沿y軸向上平移一個單位后得到的新拋物線的解析式為〔〕A.y=〔x+1〕2 B.y=〔x﹣1〕2 C.y=x2+1 D.y=x2﹣17.拋物線y=x2﹣x﹣2與x軸的一個交點為〔m,0〕,則代數式m2﹣m+2016的值為〔〕A.2015 B.2016 C.2017 D.20188.半徑為R的圓內接正六邊形的面積是〔〕A.R2 B.R2 C.R2 D.R29.75°的圓心角所對的弧長是2.5πcm,則此弧所在圓的半徑是〔〕A.6cm B.7cm C.8cm D.9cm10.如圖,在△ABC中,∠C=90°,∠BAC=70°,將△ABC繞點A順時針旋轉70°,B、C旋轉后的對應點分別是B′和C′,連接BB′,則∠BB′C′的度數是〔〕A.35° B.40° C.45° D.50°二、填空題〔每題3分,共24分〕11.方程x2=x的根是______.12.二次函數y=〔x﹣1〕2﹣2的頂點坐標是______.13.3是一元二次方程x2﹣4x+c=0的一個根,則方程的另一個根是______.14.如圖,⊙O的直徑CD=10,AB是⊙O的弦,AB⊥CD于M,且CM=2,則AB的長為______.15.二次函數y=x2+bx+c的圖象如以以下列圖,則關于x的方程x2+bx+c=0的解為x1=______,x2=3.16.如圖,兩圓圓心一樣,大圓的弦AB與小圓相切,AB=8,則圖中陰影局部的面積是______.〔結果保存π〕17.如圖,有四張卡片〔形狀、大小和質地都一樣〕,正面分別寫有字母A、B、C、D和一個不同的算式,將這四張卡片反面向上洗勻,從中隨機抽取兩張卡片,這兩張卡片上的算式只有一個正確的概率是______.18.如圖,邊長為3的正方形ABCD繞點C按順時針方向旋轉30°后得到正方形EFCG,EF交AD于點H,那么DH的長是______.三、解答題〔第19題12分,第20題10分,共計22分〕19.解方程:〔1〕x2﹣8x+1=0〔配方法〕〔2〕〔2x+1〕2﹣4x﹣2=0.20.如圖,將四邊形ABCD繞原點O旋轉180°得四邊形A′B′C′D′.〔1〕畫出旋轉后的四邊形A′B′C′D′;〔2〕寫出A′、B′、C′、D′的坐標;〔3〕假設每個小正方形的邊長是1,請直接寫出四邊形ABCD的面積.四、解答題21.如以以下列圖,在梯形ABCD中,AB∥CD,⊙O為內切圓,E、F為切點.〔1〕試猜DO與AO的位置關系,并說明理由.〔2〕假設AO=4cm,DO=3cm,求⊙O的面積.五、解答題〔第22題12分,第23題12分,共計24分〕22.如圖是二次函數y=a〔x+1〕2+2的圖象的一局部,根據圖象答復以下問題.〔1〕拋物線與x軸的一個交點的坐標是______,則拋物線與x軸的另一個交點B的坐標是______;〔2〕確定a的值;〔3〕設拋物線的頂點是P,試求△PAB的面積.23.興隆鎮某養雞專業戶準備建造如以以下列圖的矩形養雞場,要求長與寬的比為2:1,在養雞場內,沿前側內墻保存3m寬的走道,其他三側內墻各保存1m寬的走道,當矩形養雞場長和寬各為多少時,雞籠區域面積是288m2六、解答題24.一個不透明的口袋中裝有4個分別標有數1,2,3,4的小球,它們的形狀、大小完全一樣,小紅先從口袋里隨機摸出一個小球記下數為x,小穎在剩下的3個球中隨機摸出一個小球記下數為y,這樣確定了點P的坐標〔x,y〕.〔1〕小紅摸出標有數3的小球的概率是______.〔2〕請你用列表法或畫樹狀圖法表示出由x,y確定的點P〔x,y〕所有可能的結果.〔3〕求點P〔x,y〕在函數y=﹣x+5圖象上的概率.七、解答題25.如圖,點B、C、D都在半徑為6的⊙O上,過點C作AC∥BD交OB的延長線于點A,連接CD,∠CDB=∠OBD=30°.〔1〕求證:AC是⊙O的切線;〔2〕求弦BD的長;〔3〕求圖中陰影局部的面積.八、解答題26.如圖,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B〔3,5〕,拋物線y=﹣x2+bx+c交x軸于點C,D兩點,且經過點B.〔1〕求拋物線的表達式;〔2〕在拋物線上是否存在點F,使得△ACF的面積等于5,假設存在,求出點F的坐標;假設不存在,說明理由;〔3〕點M〔4,k〕在拋物線上,連接CM,求出在坐標軸的點P,使得△PCM是以∠PCM為頂角以CM為腰的等腰三角形,請直接寫出P點的坐標.九年級〔上〕期末數學試卷參考答案與試題解析一、選擇題〔每題3分,共30分〕1.以下車標圖案中,是中心對稱圖形的是〔〕A. B. C. D.【考點】中心對稱圖形.【分析】根據中心對稱圖形的概念求解即可.【解答】解:A、不是中心對稱圖形,本選項錯誤;B、不是中心對稱圖形,本選項錯誤;C、是中心對稱圖形,本選項正確;D、不是中心對稱圖形,本選項錯誤.應選C.2.一元二次方程x2=x的根是〔〕A.x=1 B.x=0 C.x1=x2 D.x1=0,x2=1【考點】解一元二次方程-因式分解法.【分析】移項后左邊因式分解即可得.【解答】解:x2﹣x=0,x〔x﹣1〕=0,∴x1=0,x2=1,應選:D.3.對于二次函數y=〔x﹣1〕2+2的圖象,以下說法正確的選項是〔〕A.開口向下 B.對稱軸是x=﹣1C.頂點坐標是〔1,2〕 D.與x軸有兩個交點【考點】二次函數的性質.【分析】根據拋物線的性質由a=1得到圖象開口向上,根據頂點式得到頂點坐標為〔1,2〕,對稱軸為直線x=1,從而可判斷拋物線與x軸沒有公共點.【解答】解:二次函數y=〔x﹣1〕2+2的圖象開口向上,頂點坐標為〔1,2〕,對稱軸為直線x=1,拋物線與x軸沒有公共點.應選:C.4.一兒童行走在如以以下列圖的地板上,當他隨意停下時,最終停在地板上陰影局部的概率是〔〕A. B. C. D.【考點】幾何概率.【分析】根據幾何概率的求法:最終停留在黑色的方磚上的概率就是黑色區域的面積與總面積的比值.【解答】解:觀察這個圖可知:黑色區域〔3塊〕的面積占總面積〔9塊〕的,故其概率為.應選:A.5.某商品經過兩次連續降價,每件售價由原來的100元降到了64元.設平均每次降價的百分率為x,則以下方程中正確的選項是〔〕A.100〔1+x〕2=64 B.64〔1+x〕2=100 C.64〔1﹣x〕2=100 D.100〔1﹣x〕2=64【考點】由實際問題抽象出一元二次方程.【分析】設平均每次降價的百分率為x,則等量關系為:原價×〔1﹣x〕2=現價,據此列方程.【解答】解:設平均每次降價的百分率為x,由題意得,100×〔1﹣x〕2=64應選D.6.將拋物線y=x2沿y軸向上平移一個單位后得到的新拋物線的解析式為〔〕A.y=〔x+1〕2 B.y=〔x﹣1〕2 C.y=x2+1 D.y=x2﹣1【考點】二次函數圖象與幾何變換.【分析】直接根據平移規律作答即可.【解答】解:將拋物線y=x2沿y軸向上平移一個單位后得到的新拋物線的解析式為y=x2+1,應選C.7.拋物線y=x2﹣x﹣2與x軸的一個交點為〔m,0〕,則代數式m2﹣m+2016的值為〔〕A.2015 B.2016 C.2017 D.2018【考點】拋物線與x軸的交點.【分析】直接利用拋物線上點的坐標性質進而得出m2﹣m=2,即可得出答案.【解答】解:∵拋物線y=x2﹣x﹣2與x軸的一個交點為〔m,0〕,∴m2﹣m﹣2=0,∴m2﹣m=2,∴m2﹣m+2016=2+2016=2018.應選:D.8.半徑為R的圓內接正六邊形的面積是〔〕A.R2 B.R2 C.R2 D.R2【考點】正多邊形和圓.【分析】利用正六邊形的特點,它被半徑分成六個全等的等邊三角形.【解答】解:連接正六邊形的中心與各個頂點,得到六個等邊三角形,等邊三角形的邊長是R,因而面積是=,因而正六邊形的面積是6×=R2.應選:C.9.75°的圓心角所對的弧長是2.5πcm,則此弧所在圓的半徑是〔〕A.6cm B.7cm C.8cm D.9cm【考點】弧長的計算.【分析】根據弧長公式L=,將n=75,L=2.5π,代入即可求得半徑長.【解答】解:∵75°的圓心角所對的弧長是2.5πcm,由L=,∴2.5π=,解得:r=6,應選:A.10.如圖,在△ABC中,∠C=90°,∠BAC=70°,將△ABC繞點A順時針旋轉70°,B、C旋轉后的對應點分別是B′和C′,連接BB′,則∠BB′C′的度數是〔〕A.35° B.40° C.45° D.50°【考點】旋轉的性質.【分析】首先在△ABB'中根據等邊對等角,以及三角形內角和定理求得∠ABB'的度數,然后在直角△BB'C中利用三角形內角和定理求解.【解答】解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.應選A.二、填空題〔每題3分,共24分〕11.方程x2=x的根是x1=0,x2=.【考點】解一元二次方程-因式分解法.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:x〔x﹣〕=0,可得x=0或x﹣=0,解得:x1=0,x2=.故答案為:x1=0,x2=12.二次函數y=〔x﹣1〕2﹣2的頂點坐標是〔1,﹣2〕.【考點】二次函數的性質.【分析】直接根據頂點式的特點寫出頂點坐標.【解答】解:二次函數y=〔x﹣1〕2﹣2的頂點坐標是:〔1,﹣2〕.故答案為:〔1,﹣2〕.13.3是一元二次方程x2﹣4x+c=0的一個根,則方程的另一個根是1.【考點】根與系數的關系.【分析】設另一個根為t,根據根與系數的關系得到3+t=4,然后解一次方程即可.【解答】解:設另一個根為t,根據題意得3+t=4,解得t=1,則方程的另一個根為1.故答案為:1.14.如圖,⊙O的直徑CD=10,AB是⊙O的弦,AB⊥CD于M,且CM=2,則AB的長為8.【考點】垂徑定理;勾股定理.【分析】連接OA,求得OA和OM的長,在直角△OAM中利用勾股定理求得AM的長,然后根據AB=2AM即可求解.【解答】解:連接OA.則OA=OC=CD=5.則OM=OC﹣CM=5﹣3=3.在直角△OAM中,AM===4.∵AB⊥CD于M,∴AB=2AM=8.故答案是:8.15.二次函數y=x2+bx+c的圖象如以以下列圖,則關于x的方程x2+bx+c=0的解為x1=﹣1,x2=3.【考點】拋物線與x軸的交點.【分析】拋物線與x軸的交點的橫坐標就是x的值.【解答】解:關于x的方程x2+bx+c=0的解為x1=﹣1,x2=3.故答案是:﹣1.16.如圖,兩圓圓心一樣,大圓的弦AB與小圓相切,AB=8,則圖中陰影局部的面積是16π.〔結果保存π〕【考點】切線的性質;勾股定理;垂徑定理.【分析】設AB與小圓切于點C,連結OC,OB,利用垂徑定理即可求得BC的長,根據圓環〔陰影〕的面積=π?OB2﹣π?OC2=π〔OB2﹣OC2〕,以及勾股定理即可求解.【解答】解:設AB與小圓切于點C,連結OC,OB.∵AB與小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4.∵圓環〔陰影〕的面積=π?OB2﹣π?OC2=π〔OB2﹣OC2〕又∵直角△OBC中,OB2=OC2+BC2∴圓環〔陰影〕的面積=π?OB2﹣π?OC2=π〔OB2﹣OC2〕=π?BC2=16π.故答案為:16π.17.如圖,有四張卡片〔形狀、大小和質地都一樣〕,正面分別寫有字母A、B、C、D和一個不同的算式,將這四張卡片反面向上洗勻,從中隨機抽取兩張卡片,這兩張卡片上的算式只有一個正確的概率是.【考點】列表法與樹狀圖法.【分析】首先此題需要兩步完成,直接運用樹狀圖法或者采用列表法,再根據列舉求出所用可能數,再求出只有一次正確的情況數根據概率公式解答即可.【解答】解:列表如下:第1次第2次ABCDABACADABABCBDBCACBCDCDADBDCD由表可知一共有12種情況,其中抽取的兩張卡片上的算式只有一個正確的有8種,所以兩張卡片上的算式只有一個正確的概率=,故答案為:.18.如圖,邊長為3的正方形ABCD繞點C按順時針方向旋轉30°后得到正方形EFCG,EF交AD于點H,那么DH的長是.【考點】正方形的性質;旋轉的性質;解直角三角形.【分析】連接CH,可知△CFH≌△CDH〔HL〕,故可求∠DCH的度數;根據三角函數定義求解.【解答】解:連接CH.∵四邊形ABCD,四邊形EFCG都是正方形,且正方形ABCD繞點C旋轉后得到正方形EFCG,∴∠F=∠D=90°,∴△CFH與△CDH都是直角三角形,在Rt△CFH與Rt△CDH中,∵,∴△CFH≌△CDH〔HL〕.∴∠DCH=∠DCF=〔90°﹣30°〕=30°.在Rt△CDH中,CD=3,∴DH=tan∠DCH×CD=.故答案為:.三、解答題〔第19題12分,第20題10分,共計22分〕19.解方程:〔1〕x2﹣8x+1=0〔配方法〕〔2〕〔2x+1〕2﹣4x﹣2=0.【考點】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】〔1〕先利用配方法得到〔x﹣4〕2=15,然后利用直接開平方法解方程;〔2〕先變形為〔2x+1〕2﹣2〔2x+1〕=0,然后利用因式分解法解方程.【解答】解:〔1〕移項得x2﹣8x=﹣1,配方得x2﹣8x+42=﹣1+42,〔x﹣4〕2=15,x﹣4=±,即x1=4+x2=4﹣;〔2〕〔2x+1〕2﹣2〔2x+1〕=0,〔2x+1〕〔2x﹣1〕=0,2x+1=0或2x﹣1=0所以解得x1=﹣x2=.20.如圖,將四邊形ABCD繞原點O旋轉180°得四邊形A′B′C′D′.〔1〕畫出旋轉后的四邊形A′B′C′D′;〔2〕寫出A′、B′、C′、D′的坐標;〔3〕假設每個小正方形的邊長是1,請直接寫出四邊形ABCD的面積.【考點】作圖-旋轉變換.【分析】〔1〕根據網格構造找出點A、B、C、D關于原點對稱的點A′、B′、C′、D′的位置,然后順次連接即可;〔2〕根據平面直角坐標系寫出各點的坐標即可;〔3〕利用四邊形所在的矩形的面積減去四周四個小直角三角形和一個小正方形的面積,列式計算即可得解.【解答】解:〔1〕四邊形A′B′C′D′如以以下列圖;〔2〕A′〔2,1〕、B′〔﹣2,2〕、C′〔﹣1,﹣2〕、D′〔1,﹣1〕;〔3〕S四邊形ABCD=4×4﹣×1×4﹣×1×4﹣×1×2﹣×1×2﹣1×1,=16﹣2﹣2﹣1﹣1﹣1,=16﹣7,=9.四、解答題21.如以以下列圖,在梯形ABCD中,AB∥CD,⊙O為內切圓,E、F為切點.〔1〕試猜DO與AO的位置關系,并說明理由.〔2〕假設AO=4cm,DO=3cm,求⊙O的面積.【考點】切線的性質;梯形.【分析】〔1〕由⊙O是梯形ABCD的內切圓,易得DE和DF是⊙O的兩條切線,即可得∠ADO+∠DAO=〔∠ADC+∠DAB〕,又由AB∥CD,可得∠ADO+∠DAO=90°,繼而證得結論;〔2〕由AO=4cm,DO=3cm,可求得AD的長,繼而求得EO的長,則可求得答案.【解答】解:〔1〕AO⊥DO.理由:∵⊙O是梯形ABCD的內切圓,∴DE和DF是⊙O的兩條切線,∴∠ADO=∠CDO=∠ADC.同理可得:∠DAO=∠DAB.∴∠ADO+∠DAO=〔∠ADC+∠DAB〕,∵AB∥CD,∴∠ADC+∠DAB=180°,∴∠ADO+∠DAO=×180°=90°,∵∠AOD=180°﹣〔∠ADO+∠DAO〕=90°,∴AO⊥DO;〔2〕∵DO=3cmAO=4cm,∠AOD=90°∴AD==5cm,在Rt△AOD中,EO⊥AD,∴AD?EO=DO?AO,即5EO=3×4,解得EO=cm,∴S⊙O=πEO2=π〔〕2=π.五、解答題〔第22題12分,第23題12分,共計24分〕22.如圖是二次函數y=a〔x+1〕2+2的圖象的一局部,根據圖象答復以下問題.〔1〕拋物線與x軸的一個交點的坐標是〔﹣3,0〕,則拋物線與x軸的另一個交點B的坐標是〔1,0〕;〔2〕確定a的值;〔3〕設拋物線的頂點是P,試求△PAB的面積.【考點】拋物線與x軸的交點.【分析】〔1〕由圖象可求得A點的坐標,由解析式可求得拋物線的對稱軸方程,利用圖象的對稱性可求得B點坐標;〔2〕把B點坐標代入拋物線解析式可求得a的值;〔3〕由拋物線解析式可求得P點坐標,再結合A、B坐標可求得AB的值,則可求得△PAB的面積.【解答】解:〔1〕由圖象可知A點坐標為〔﹣3,0〕,∵y=a〔x+1〕2+2,∴拋物線對稱軸方程為x=﹣1,∵A、B兩點關于對稱軸對稱,∴B的坐標為〔1,0〕,故答案為:〔﹣3,0〕;〔1,0〕;〔2〕將〔1,0〕代入y=a〔x+1〕2+2,可得0=4a+2,解得a=﹣;〔3〕∵y=a〔x+1〕2+2,∴拋物線的頂點坐標是〔﹣1,2〕,∵A〔﹣3,0〕,B〔1,0〕,∴AB=XB﹣XA=1﹣〔﹣3〕=4,∴S△PAB=×4×2=4.23.興隆鎮某養雞專業戶準備建造如以以下列圖的矩形養雞場,要求長與寬的比為2:1,在養雞場內,沿前側內墻保存3m寬的走道,其他三側內墻各保存1m寬的走道,當矩形養雞場長和寬各為多少時,雞籠區域面積是288m2【考點】一元二次方程的應用.【分析】等量關系為:〔雞場的長﹣4〕〔雞場的寬﹣2〕=288,把相關數值代入求得適宜的解即可.【解答】解:設雞場的寬為xm,則長為2xm.〔2x﹣4〕〔x﹣2〕=288,〔x﹣14〕〔x+10〕=0,解得x=14,或x=﹣10〔不合題意,舍去〕.∴2x=28.答:雞場的長為28m,寬為14m.六、解答題24.一個不透明的口袋中裝有4個分別標有數1,2,3,4的小球,它們的形狀、大小完全一樣,小紅先從口袋里隨機摸出一個小球記下數為x,小穎在剩下的3個球中隨機摸出一個小球記下數為y,這樣確定了點P的坐標〔x,y〕.〔1〕小紅摸出標有數3的小球的概率是.〔2〕請你用列表法或畫樹狀圖法表示出由x,y確定的點P〔x,y〕所有可能的結果.〔3〕求點P〔x,y〕在函數y=﹣x+5圖象上的概率.【考點】列表法與樹狀圖法;一次函數圖象上點的坐標特征.【分析】〔1〕根據概率公式求解;〔2〕利用樹狀圖展示所有12種等可能的結果數;〔3〕利用一次函數圖象上點的坐標特征得到在函數y=﹣x+5的圖象上的結果數,然后根據概率公式求解.【解答】解:〔1〕小紅摸出標有數3的小球的概率是;故答案為;〔2〕畫樹狀圖為:由列表或畫樹狀圖可知,P點的坐標可能是〔1,2〕〔1,3〕〔1,4〕〔2,1〕〔2,3〕,〔2,4〕〔3,1〕〔3,2〕〔3,4〕〔4,1〕〔4,2〕〔4,3〕共12種情況,〔3〕共有12種可能的結果,其中在函數y=﹣x+5的圖象上的有4種,即〔1,4〕〔2,3〕〔3,2〕〔4,1〕所以點P〔x,y〕在函數y=﹣x+5圖象上的概率==.七、解答題25.如圖,點B、C、D都在半徑為6的⊙O上,過點C作AC∥BD交OB的延長線于點A,連接CD,∠CDB=∠OBD=30°.〔1〕求證:AC是⊙O的切線;〔2〕求弦BD的長;〔3〕求圖中陰影局部的面積.【考點】切線的判定;垂徑定理的應用;扇形面積的計算.【分析】〔1〕連接OC,OC交BD于E,由∠CDB=∠OBD可知,CD∥AB,又AC∥BD,四邊形ABDC為平行四邊形,則∠A=∠D=30°,由圓周角定理可知∠COB=2∠D=60°,由內角和定理可求∠OCA=90°,證明切線;〔2〕利用〔1〕中的切線的性質和垂徑定理以及解直角三角形來求BD的長度;〔3〕證明△OEB≌△CED,將陰影局部面積問題轉化為求扇形OBC的面積.【解答】〔1〕證明:連接OC,OC交BD于E,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∵∠CDB=∠OBD,∴CD∥AB,又∵AC∥BD,∴四邊形ABDC為平行四邊形,∴∠A=∠D=30°,∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC又∵OC是⊙O的半徑,∴AC是⊙O的切線;〔2〕解:由〔1〕知,OC⊥AC.∵AC∥BD,∴OC⊥BD,∴BE=DE,∵在直角△BEO中,∠OBD=30°,OB=6,∴BE=OBcos30°=3,∴BD=2BE=6;〔3〕解:易證△OEB≌△CED,∴S陰影=S扇形BOC∴S陰影==6π.答:陰影局部的面積是6π.八、解答題26.如圖,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B〔3,5〕,拋物線y=﹣x2+bx+c交x軸于點C,D兩點,且經過點B.〔1〕求拋物線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 舞蹈藝術在藝術市場趨勢分析與發展預測考核試卷
- 萍鄉學院《藥物化學》2023-2024學年第一學期期末試卷
- 沈陽科技學院《科倫理與學術規范博士》2023-2024學年第二學期期末試卷
- 山西省朔州市右玉縣2025屆四下數學期末學業質量監測模擬試題含解析
- 蘭州信息科技學院《口譯理論與實踐》2023-2024學年第一學期期末試卷
- 山東省聊城市文苑中學2025年高三3月綜合測試歷史試題含解析
- 山東菏澤定陶區2025年初三年級第二次模擬考試數學試題含解析
- 山東杏林科技職業學院《入侵檢測與防御》2023-2024學年第二學期期末試卷
- 石嘴山市2024-2025學年四年級數學第二學期期末統考試題含解析
- 江西司法警官職業學院《心肺康復》2023-2024學年第一學期期末試卷
- 豬場買賣合同協議
- 湖北省武漢市2025屆高中畢業生四月調研考試生物試題及答案(武漢四調)
- 25年公司級安全培訓考試試題含答案【典型題】
- 啤酒分銷合同協議
- 2024年山東鐵投集團春季社會公開招聘46人筆試參考題庫附帶答案詳解
- 供應商的準入管理
- 遼寧省名校聯盟2025屆高三高考模擬(調研卷)(四)數學試題
- 武漢2025屆高中畢業生二月調研考試數學試題及答案
- 小學數學六年級下冊-比例練習題(附帶答案及詳細解析)
- 物業財務知識培訓課件
- 新媒體技術應用 課件 5.1.1易企秀如何制作H5
評論
0/150
提交評論