




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省百校聯盟2025屆高三高考考前適應性模擬卷(三)數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的共軛復數是,且(為虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知中內角所對應的邊依次為,若,則的面積為()A. B. C. D.3.如圖所示,網絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.84.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.5.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.6.復數的共軛復數在復平面內所對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如圖所示,三國時代數學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.20 B.27 C.54 D.648.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②9.設雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.10.已知為實數集,,,則()A. B. C. D.11.函數f(x)=lnA. B. C. D.12.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調.如圖的程序是與“三分損益”結合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則________.14.在的展開式中,所有的奇數次冪項的系數和為-64,則實數的值為__________.15.若函數恒成立,則實數的取值范圍是_____.16.已知函數在定義域R上的導函數為,若函數沒有零點,且,當在上與在R上的單調性相同時,則實數k的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的極坐標為,直線與曲線的交點為,求的值.18.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.19.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.20.(12分)已知數列是等差數列,前項和為,且,.(1)求.(2)設,求數列的前項和.21.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.22.(10分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
設,整理得到方程組,解方程組即可解決問題.【詳解】設,因為,所以,所以,解得:,所以復數在復平面內對應的點為,此點位于第四象限.故選D本題主要考查了復數相等、復數表示的點知識,考查了方程思想,屬于基礎題.2.A【解析】
由余弦定理可得,結合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.本題考查利用余弦定理解三角形,考查學生的基本計算能力,是一道容易題.3.A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.4.C【解析】
根據表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.5.C【解析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.6.D【解析】
由復數除法運算求出,再寫出其共軛復數,得共軛復數對應點的坐標.得結論.【詳解】,,對應點為,在第四象限.故選:D.本題考查復數的除法運算,考查共軛復數的概念,考查復數的幾何意義.掌握復數的運算法則是解題關鍵.7.B【解析】
設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數大約為,利用概率模擬列方程即可求解。【詳解】設大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數大約為,則,解得:故選:B本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。8.C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.9.A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A本題考查雙曲線的簡單幾何性質,屬于中檔題.10.C【解析】
求出集合,,,由此能求出.【詳解】為實數集,,,或,.故選:.本題考查交集、補集的求法,考查交集、補集的性質等基礎知識,考查運算求解能力,是基礎題.11.C【解析】因為fx=lnx2-4x+4x-23=12.B【解析】
根據循環語句,輸入,執行循環語句即可計算出結果.【詳解】輸入,由題意執行循環結構程序框圖,可得:第次循環:,,不滿足判斷條件;第次循環:,,不滿足判斷條件;第次循環:,,滿足判斷條件;輸出結果.故選:本題考查了循環語句的程序框圖,求輸出的結果,解答此類題目時結合循環的條件進行計算,需要注意跳出循環的判定語句,本題較為基礎.二、填空題:本題共4小題,每小題5分,共20分。13.13【解析】
由導函數的應用得:設,,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設,,所以,,又,所以,即,取得:,又,所以,故,故答案為:13本題考查了導函數的應用、二項式定理,屬于中檔題14.3或-1【解析】
設,分別令、,兩式相減即可得,即可得解.【詳解】設,令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.本題考查了二項式定理的應用,考查了運算能力,屬于中檔題.15.【解析】
若函數恒成立,即,求導得,在三種情況下,分別討論函數單調性,求出每種情況時的,解關于的不等式,再取并集,即得。【詳解】由題意得,只要即可,,當時,令解得,令,解得,單調遞減,令,解得,單調遞增,故在時,有最小值,,若恒成立,則,解得;當時,恒成立;當時,,單調遞增,,不合題意,舍去.綜上,實數的取值范圍是.故答案為:本題考查恒成立條件下,求參數的取值范圍,是常考題型。16.【解析】
由題意可知:為上的單調函數,則為定值,由指數函數的性質可知為上的增函數,則在,單調遞增,求導,則恒成立,則,根據函數的正弦函數的性質即可求得的取值范圍.【詳解】若方程無解,則或恒成立,所以為上的單調函數,都有,則為定值,設,則,易知為上的增函數,,,又與的單調性相同,在上單調遞增,則當,,恒成立,當,時,,,,,,此時,故答案為:本題考查導數的綜合應用,考查利用導數求函數的單調性,正弦函數的性質,輔助角公式,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由公式可化極坐標方程為直角坐標方程;(2)把點極坐標化為直角坐標,直線的參數方程是過定點的標準形式,因此直接把參數方程代入曲線的方程,利用參數的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標方程為,即(2)點的直角坐標為,易知.設對應參數分別為將與聯立得本題考查極坐標方程與直角坐標方程的互化,考查直線參數方程,解題時可利用利用參數方程的幾何意義求直線上兩點間距離問題.18.(1);(2)存在,當時,以線段為直徑的圓恰好經過坐標原點O.【解析】
(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數使得以線段為直徑的圓恰好經過坐標原點.設點,,,,將直線的方程代入,化簡,利用韋達定理,結合向量的數量積為0,轉化為:.求解即可.【詳解】解:(1)設橢圓的焦半距為c,則由題設,得,解得,所以,故所求橢圓C的方程為(2)存在實數k使得以線段為直徑的圓恰好經過坐標原點O.理由如下:設點,,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經過坐標原點O,所以,即.又,于是,解得,經檢驗知:此時(*)式的,符合題意.所以當時,以線段為直徑的圓恰好經過坐標原點O本題考查橢圓方程的求法,橢圓的簡單性質,直線與橢圓位置關系的綜合應用,考查計算能力以及轉化思想的應用,屬于中檔題.19.(1)的長為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系,設,根據向量垂直關系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系.設,則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據圖可知,二面角的余弦值為.本題考查了立體幾何中的線段長度,二面角,意在考查學生的計算能力和空間想象能力.20.(1)(2)【解析】
(1)由數列是等差數列,所以,解得,又由,解得,即可求得數列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數列的前n項和.【詳解】(1)由題意,數列是等差數列,所以,又,,由,得,所以,解得,所以數列的通項公式為.(2)由(1)得,,,兩式相減得,,即.本題主要考查等差的通項公式、以及“錯位相減法”求和的應用,此類題目是數列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,易錯點是在“錯位”之后求和時,弄錯等比數列的項數,能較好的考查考生的數形結合思想、邏輯思維能力及基本計算能力等.21.(1)12(2)【解析】
(1)根據焦距得焦點坐標,結合橢圓上的點的坐標,根據定義;(2)求出橢圓的標準方程,設,聯立直線和橢圓,結合韋達定理表示出面積,即可求解最大值.【詳解】(1)設橢園的焦距為,則,故.則橢圓過點,由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設,則,,,,,當且僅當在短軸頂點處取等,故面積的最大值為.此題考查根據橢圓的焦點和橢圓上的點的坐標求橢圓的標準方程,根據直線與橢圓的交點關系求三角形面積的最值,涉及韋達定理的使用,綜合性強,計算量大.22.(1)見解析(2)【解析】
(1)根據等邊三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國均速皮托管行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國商業水培系統行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國廚房水槽柜行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國發泡包裝行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國危險區域信號設備行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國醫聯體產業市場發展分析及前景趨勢與投資研究報告
- 2025-2030中國包裝印刷行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國剛性自卸車行業市場發展趨勢與前景展望戰略研究報告
- 苗木買賣協議書模板
- 2025-2030中國公共安防行業市場深度分析及風險對策與競爭策略研究報告
- 六年級數學下冊第二次月考試卷(各版本)
- 中國反恐形勢的現狀和對策分析研究
- 籃球協會章程和規章制度
- 技師學院高層次人才引進和管理辦法
- 水輪機選型畢業設計及solidworks建立轉輪模型
- 無創正壓通氣急診臨床實踐專家共識
- 【精選】人教版四年級下冊數學《脫式計算》(含簡便運算)專項練習題
- 常用檢驗項目的醫學決定水平
- 急診及重癥醫學-機械通氣
- YY/T 1248-2014乙型肝炎病毒表面抗體測定試劑(盒)(化學發光免疫分析法)
- 平面位置(軸線)測量記錄表
評論
0/150
提交評論