2025屆西南名校高三適應性測試數學試題含解析_第1頁
2025屆西南名校高三適應性測試數學試題含解析_第2頁
2025屆西南名校高三適應性測試數學試題含解析_第3頁
2025屆西南名校高三適應性測試數學試題含解析_第4頁
2025屆西南名校高三適應性測試數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆西南名校高三適應性測試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.展開項中的常數項為A.1 B.11 C.-19 D.512.函數的大致圖象為A. B.C. D.3.已知實數滿足約束條件,則的最小值是A. B. C.1 D.44.若,,,點C在AB上,且,設,則的值為()A. B. C. D.5.要得到函數的圖像,只需把函數的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位6.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值7.已知函,,則的最小值為()A. B.1 C.0 D.8.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.9.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.10.在中,,則()A. B. C. D.11.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.12.某醫院擬派2名內科醫生、3名外科醫生和3名護士共8人組成兩個醫療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫生、外科醫生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,且,則_________.14.若函數()的圖象與直線相切,則______.15.在平面直角坐標系中,已知點,,若圓上有且僅有一對點,使得的面積是的面積的2倍,則的值為_______.16.已知是拋物線上一點,是圓關于直線對稱的曲線上任意一點,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知正實數滿足.(1)求的最小值.(2)證明:19.(12分)如圖所示,在四棱錐中,平面,底面ABCD滿足AD∥BC,,,E為AD的中點,AC與BE的交點為O.(1)設H是線段BE上的動點,證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線BC與平面PBD所成角的余弦值.20.(12分)在中,,,.求邊上的高.①,②,③,這三個條件中任選一個,補充在上面問題中并作答.21.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.22.(10分)已知橢圓的右焦點為,過點且斜率為的直線與橢圓交于兩點,線段的中點為為坐標原點.(1)證明:點在軸的右側;(2)設線段的垂直平分線與軸、軸分別相交于點.若與的面積相等,求直線的斜率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.2.A【解析】

因為,所以函數是偶函數,排除B、D,又,排除C,故選A.3.B【解析】

作出該不等式組表示的平面區域,如下圖中陰影部分所示,設,則,易知當直線經過點時,z取得最小值,由,解得,所以,所以,故選B.4.B【解析】

利用向量的數量積運算即可算出.【詳解】解:,,又在上,故選:本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.5.A【解析】

運用輔助角公式將兩個函數公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.本題考查了三角函數圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數和目標函數;二是在平移時,忘記乘了自變量前的系數.6.B【解析】

根據平行的傳遞性判斷A;根據面面平行的定義判斷B;根據線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據線面垂直的性質得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.7.B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.本題考查整體換元法求正弦型函數的最值,涉及到二倍角公式的應用,是一道中檔題.8.B【解析】

根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.9.C【解析】

畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關鍵.10.A【解析】

先根據得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.11.A【解析】

先由題和拋物線的性質求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質以及雙曲線的定義是解題的關鍵,屬于中檔題.12.B【解析】

根據條件2名內科醫生,每個村一名,3名外科醫生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫生,每個村一名,有2種方法,3名外科醫生和3名護士,平均分成兩組,要求外科醫生和護士都有,則分1名外科,2名護士和2名外科醫生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于常考題型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由數量積的運算律求得,再由數量積的定義可得結論.【詳解】由題意,∴,即,∴.故答案為:.本題考查求向量的夾角,掌握數量積的定義與運算律是解題關鍵.14.2【解析】

設切點由已知可得,即可解得所求.【詳解】設,因為,所以,即,又,.所以,即,.故答案為:.本題考查導數的幾何意義,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,難度較易.15.【解析】

寫出所在直線方程,求出圓心到直線的距離,結合題意可得關于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點,有且僅有一對,可得點到的距離是點到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.本題考查直線和圓的位置關系以及點到直線的距離公式應用,考查數形結合的解題思想方法,屬于中檔題.16.【解析】

由題意求出圓的對稱圓的圓心坐標,求出對稱圓的圓坐標到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設圓心關于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設,則,又,所以,,即,所以,故答案為:.該題考查的是有關動點距離的最小值問題,涉及到的知識點有點關于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見證明;(2)【解析】

(1)設是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標原點,的方向為軸的正方向,建空間直角坐標系,分別計算各個點坐標,計算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設是的中點,連接、,是的中點,,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點作,垂足為,平面,以為坐標原點,的方向為軸的正方向,建立如圖的空間直角坐標系,則,,,,設是平面的一個法向量,則,,令,則,,,直線與平面所成角的正弦值為.本題考查了線面垂直,線線垂直,利用空間直角坐標系解決線面夾角問題,意在考查學生的空間想象能力和計算能力.18.(1);(2)見解析【解析】

(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.19.(1)證明見解析(2)(3)【解析】

(1)因為底面ABCD為梯形,且,所以四邊形BCDE為平行四邊形,則BE∥CD,又平面,平面,所以平面,又因為H為線段BE上的動點,的面積是定值,從而三棱錐的體積是定值.(2)因為平面,所以,結合BE∥CD,所以,又因為,,且E為AD的中點,所以四邊形ABCE為正方形,所以,結合,則平面,連接,則,因為平面,所以,因為,所以是等腰直角三角形,O為斜邊AC上的中點,所以,且,所以平面,所以PO是四棱錐的高,又因為梯形ABCD的面積為,在中,,所以.(3)以O為坐標原點,建立空間直角坐標系,如圖所示,則B(,0,0),C(0,,0),D(,,0),P(0,0,),則,設平面PBD的法向量為,則即則,令,得到,設BC與平面PBD所成的角為,則,所以,所以直線BC與平面PBD所成角的余弦值為.20.詳見解析【解析】

選擇①,利用正弦定理求得,利用余弦定理求得,再計算邊上的高.選擇②,利用正弦定理得出,由余弦定理求出,再求邊上的高.選擇③,利用余弦定理列方程求出,再計算邊上的高.【詳解】選擇①,在中,由正弦定理得,即,解得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇②,在中,由正弦定理得,又因為,所以,即;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇③,在中,由,得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.本小題主要考查真閑的了、余弦定理解三角形,屬于中檔題.21.(1)詳見解析;(2)詳見解析.【解析】

(1)連結根據中位線的性質證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結是菱形對角線的交點,為的中點,是棱的中點,平面平面平面解:在菱形中,且為的中點,,,平面平面,平面平面.本題主要考查了線面平行與垂直的判定,屬于基礎題.22.(1)證明見解析(2)【解析】

(1)設出直線的方程,與橢圓方程聯立,利用根與系數的關系求出點的橫坐標即可證出;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論