湖南省永州市寧遠縣一中2025屆高考數學試題二輪復習高中總復習第2輪仿真沖刺卷_第1頁
湖南省永州市寧遠縣一中2025屆高考數學試題二輪復習高中總復習第2輪仿真沖刺卷_第2頁
湖南省永州市寧遠縣一中2025屆高考數學試題二輪復習高中總復習第2輪仿真沖刺卷_第3頁
湖南省永州市寧遠縣一中2025屆高考數學試題二輪復習高中總復習第2輪仿真沖刺卷_第4頁
湖南省永州市寧遠縣一中2025屆高考數學試題二輪復習高中總復習第2輪仿真沖刺卷_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省永州市寧遠縣一中2025屆高考數學試題二輪復習高中總復習第2輪仿真沖刺卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某人造地球衛星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛星近地點離地面的距離為,則該衛星遠地點離地面的距離為()A. B.C. D.2.已知函數,且關于的方程有且只有一個實數根,則實數的取值范圍().A. B. C. D.3.已知數列的前項和為,且,,則()A. B. C. D.4.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種5.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)6.如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩條漸近線分別相交于兩點.若則雙曲線的離心率為()A. B.C. D.7.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面個數分別記為,則下列結論正確的是()A. B. C. D.8.已知集合,,則的真子集個數為()A.1個 B.2個 C.3個 D.4個9.函數的一個單調遞增區間是()A. B. C. D.10.復數的虛部為()A. B. C.2 D.11.已知數列滿足,且成等比數列.若的前n項和為,則的最小值為()A. B. C. D.12.已知集合,,則為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,為定長,,若的面積的最大值為,則邊的長為____________.14.函數的定義域為__________.15.已知數列為正項等比數列,,則的最小值為________.16.在中,,,,則繞所在直線旋轉一周所形成的幾何體的表面積為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點到平面的距離.18.(12分)在直角坐標系中,曲線的參數方程為(為參數).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設直線與曲線交于兩點,求的取值范圍.19.(12分)已知變換將平面上的點,分別變換為點,.設變換對應的矩陣為.(1)求矩陣;(2)求矩陣的特征值.20.(12分)已知橢圓的左焦點為F,上頂點為A,直線AF與直線垂直,垂足為B,且點A是線段BF的中點.(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線交于點Q,且,求點P的坐標.21.(12分)中,內角的對邊分別為,.(1)求的大小;(2)若,且為的重心,且,求的面積.22.(10分)已知等差數列{an}的各項均為正數,Sn為等差數列{an}的前n項和,.(1)求數列{an}的通項an;(2)設bn=an?3n,求數列{bn}的前n項和Tn.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題意畫出圖形,結合橢圓的定義,結合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.2、B【解析】

根據條件可知方程有且只有一個實根等價于函數的圖象與直線只有一個交點,作出圖象,數形結合即可.【詳解】解:因為條件等價于函數的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數圖象與方程零點之間的關系,數形結合是關鍵,屬于基礎題.3、C【解析】

根據已知條件判斷出數列是等比數列,求得其通項公式,由此求得.【詳解】由于,所以數列是等比數列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數列的證明,考查等比數列通項公式,屬于基礎題.4、C【解析】

根據題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數原理計算可得答案.【詳解】解:根據題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應用,涉及分步計數原理的應用,屬于基礎題.5、C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.6、A【解析】

易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關鍵的是找到的方程或不等式,本題屬于容易題.7、A【解析】

根據題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.8、C【解析】

求出的元素,再確定其真子集個數.【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數問題,解題時可先確定交集中集合的元素個數,解題關鍵是對集合元素的認識,本題中集合都是曲線上的點集.9、D【解析】

利用同角三角函數的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據三角函數單調區間的求法,求得的單調區間,由此確定正確選項.【詳解】因為,由單調遞增,則(),解得(),當時,D選項正確.C選項是遞減區間,A,B選項中有部分增區間部分減區間.故選:D【點睛】本小題考查三角函數的恒等變換,三角函數的圖象與性質等基礎知識;考查運算求解能力,推理論證能力,數形結合思想,應用意識.10、D【解析】

根據復數的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數的除法運算和復數的概念.11、D【解析】

利用等比中項性質可得等差數列的首項,進而求得,再利用二次函數的性質,可得當或時,取到最小值.【詳解】根據題意,可知為等差數列,公差,由成等比數列,可得,∴,解得.∴.根據單調性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數列通項公式、等比中項性質、等差數列前項和的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.12、C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設,以為原點,為軸建系,則,,設,,,利用求向量模的公式,可得,根據三角形面積公式進一步求出的值即為所求.【詳解】解:設,以為原點,為軸建系,則,,設,,則,即,由,可得.則.故答案為:.【點睛】本題考查向量模的計算,建系是關鍵,屬于難題.14、【解析】

根據函數成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數成立的條件.15、27【解析】

利用等比數列的性質求得,結合其下標和性質和均值不等式即可容易求得.【詳解】由等比數列的性質可知,則,.當且僅當時取得最小值.故答案為:.【點睛】本題考查等比數列的下標和性質,涉及均值不等式求和的最小值,屬綜合基礎題.16、【解析】

由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,根據圓錐側面積計算公式可得.【詳解】解:由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【點睛】本題考查旋轉體的表面積計算問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)取的中點,證明,則平面平面,則可證平面.(2)利用,是平面的高,容易求.,再求,則點到平面的距離可求.【詳解】解:(1)如圖:取的中點,連接、.在中,是的中點,是的中點,平面平面,故平面在直角梯形中,,且,∴四邊形是平行四邊形,,同理平面又,故平面平面,又平面平面.(2)是圓的直徑,點是圓上異于、的一點,又∵平面平面,平面平面平面,可得是三棱錐的高線.在直角梯形中,.設到平面的距離為,則,即由已知得,由余弦定理易知:,則解得,即點到平面的距離為故答案為:.【點睛】考查線面平行的判定和利用等體積法求距離的方法,是中檔題.18、(1)的極坐標方程為,普通方程為;(2)【解析】

(1)根據三角函數恒等變換可得,,可得曲線的普通方程,再運用圖像的平移得依題意得曲線的普通方程為,利用極坐標與平面直角坐標互化的公式可得方程;(2)法一:將代入曲線的極坐標方程得,運用韋達定理可得,根據,可求得的范圍;法二:設直線的參數方程為(為參數,為直線的傾斜角),代入曲線的普通方程得,運用韋達定理可得,根據,可求得的范圍;【詳解】(1),,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標方程為;(2)法一:將代入曲線的極坐標方程得,則,,,異號,,,;法二:設直線的參數方程為(為參數,為直線的傾斜角),代入曲線的普通方程得,則,,,異號,,.【點睛】本題考查參數方程與普通方程,極坐標方程與平面直角坐標方程之間的轉化,求解幾何量的取值范圍,關鍵在于明確極坐標系中極徑和極角的幾何含義,直線的參數方程,參數的幾何意義,屬于中檔題.19、(1)(2)1或6【解析】

(1)設,根據變換可得關于的方程,解方程即可得到答案;(2)求出特征多項式,再解方程,即可得答案;【詳解】(1)設,則,,即,解得,則.(2)設矩陣的特征多項式為,可得,令,可得或.【點睛】本題考查矩陣的求解、矩陣的特征值,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.20、(I).(II)【解析】

(I)寫出坐標,利用直線與直線垂直,得到.求出點的坐標代入,可得到的一個關系式,由此求得和的值,進而求得橢圓方程.(II)設出點的坐標,由此寫出直線的方程,從而求得點的坐標,代入,化簡可求得點的坐標.【詳解】(I)∵橢圓的左焦點,上頂點,直線AF與直線垂直∴直線AF的斜率,即①又點A是線段BF的中點∴點的坐標為又點在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設由(I)易得頂點M、N的坐標為∴直線MP的方程是:由得:又點P在橢圓上,故∴∴∴或(舍)∴∴點P的坐標為【點睛】本小題主要考查直線和圓錐曲線的位置關系,考查兩直線垂直的條件,考查向量數量積的運算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標、所敘述的直線是怎么得到的,向量的數量積對應的坐標都有哪一些,應該怎么得到,這些在讀題的時候需要分析清楚.21、(1);(2)【解析】

(1)利用正弦定理,轉化為,分析運算即得解;(2)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論