湖北省華大新高考聯(lián)盟2025屆高三下學(xué)期3月教學(xué)質(zhì)量測評數(shù)學(xué)試題 含解析_第1頁
湖北省華大新高考聯(lián)盟2025屆高三下學(xué)期3月教學(xué)質(zhì)量測評數(shù)學(xué)試題 含解析_第2頁
湖北省華大新高考聯(lián)盟2025屆高三下學(xué)期3月教學(xué)質(zhì)量測評數(shù)學(xué)試題 含解析_第3頁
湖北省華大新高考聯(lián)盟2025屆高三下學(xué)期3月教學(xué)質(zhì)量測評數(shù)學(xué)試題 含解析_第4頁
湖北省華大新高考聯(lián)盟2025屆高三下學(xué)期3月教學(xué)質(zhì)量測評數(shù)學(xué)試題 含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

華大新高考聯(lián)盟2025屆高三3月教學(xué)質(zhì)量測評數(shù)學(xué)本試題卷共4頁,共19題.滿分150分,考試用時120分鐘★祝考試順利★注意事項:1.答題前,考生務(wù)必將自己的學(xué)校?班級?姓名?準(zhǔn)考證號填寫在答題卷指定位置,認(rèn)真核對與準(zhǔn)考證號條形碼上的信息是否一致,并將準(zhǔn)考證號條形碼粘貼在答題卷上的指定位置.2.選擇題的作答:選出答案后,用2B鉛筆把答題卷上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號.答在試題卷上無效.3.非選擇題的作答:用黑色墨水的簽字筆直接答在答題卷上的每題題所對應(yīng)的答題區(qū)域內(nèi).答在試題卷上或答題卷指定區(qū)域外無效.4.考試結(jié)束,監(jiān)考人員將答題卷收回,考生自己保管好試題卷,評講時帶來.一?選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知集合,,則的子集個數(shù)為()A. B. C. D.【答案】B【解析】【分析】直接計算交集,進而可確定其子集的個數(shù).【詳解】由已知,,則,則子集的個數(shù)為個,故選:B.2.在復(fù)平面內(nèi)所對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限【答案】D【解析】【分析】由復(fù)數(shù)的乘法運算,整理其為標(biāo)準(zhǔn)式,結(jié)合復(fù)數(shù)的幾何意義,可得答案.【詳解】,其在復(fù)平面內(nèi)所對應(yīng)的點的坐標(biāo)為,位于第四象限.故選:D.3.已知某機械在生產(chǎn)正常的情況下,生產(chǎn)出的產(chǎn)品的指標(biāo)參數(shù)符合正態(tài)分布.現(xiàn)從該機械生產(chǎn)出的所有產(chǎn)品中隨機抽取2件,則這2件產(chǎn)品的質(zhì)量指標(biāo)分別在)和的概率為()(運算結(jié)果保留小數(shù)點后兩位)參考數(shù)據(jù):若服從正態(tài)分布,則,.A.0.57 B.0.75 C.0.80 D.0.84【答案】C【解析】【分析】由正太分布概率計算及概率乘法公式即可求解.【詳解】,,故所求概率,故選:C.4.已知在中,角,,所對的邊分別為,,,其中,若,則外接圓的面積為()A. B. C. D.【答案】B【解析】【分析】根據(jù)正弦定理進行邊角互化,再結(jié)合三角恒等變換可得,進而可外接圓半徑與面積.【詳解】由正弦定理得,,解得,故,則,故所求外接圓的面積為,故選:B.5.如圖,已知在四面體中,為等邊三角形,的面積為,點在平面上的投影為點,點分別為的中點,則()A.與相交 B.與異面C. D.【答案】C【解析】【分析】AB選項,作出輔助線,得到,由于與相交,故與異面;CD選項,建立空間直角坐標(biāo)系,利用三角形面積求出等邊三角形邊長,寫出點的坐標(biāo),利用向量夾角公式得到C正確,D錯誤.【詳解】AB選項,連接,則,平面,平面,由于與相交,故與異面,故AB錯誤;C選項,的面積為,為等邊三角形,設(shè)的邊長為,則,解得,因為分別為的中點,所以⊥,又在平面上的投影為點,故⊥平面,以為坐標(biāo)原點,所在直線為軸,平行的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,又,故,則,,所以,C正確;D選項,,,,故故所成角的余弦值為,故D錯誤.故選:C.6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng),約定滿十進一就是十進制,滿八進一就是八進制,即“滿幾進一”就是幾進制,不同進制的數(shù)可以相互轉(zhuǎn)換,如十進制下,,用八進制表示159這個數(shù)就是237.現(xiàn)用八進制表示十進制的,則這個八進制數(shù)的最后一位為()A.3 B.4 C.5 D.7【答案】D【解析】【分析】由,通過二項式定理展開即可求解.【詳解】,而,故最后一位數(shù)為7,故選:D.7.已知正三棱柱的底面邊長為,側(cè)棱長為,點在平面上(不含三棱柱的頂點),若,則的最小值為()A. B. C. D.【答案】D【解析】【詳解】由題意知,點是在以線段為直徑的球與平面形成的交線上,如圖,取的中點,的中點,設(shè)BP的中點為,連接,則,,過點作,垂足為N,由于,又根據(jù)正三棱柱可知,平面,所以平面,則平面,則,而,,,,故點在以為圓心,為半徑的圓上,故的最小值為,故選:D.8.已知雙曲線的左、右焦點分別為,點在雙曲線上,且,若的內(nèi)心為,且與共線,則雙曲線的漸近線方程為()A. B.C. D.【答案】B【解析】【分析】根據(jù)與共線,求出點的縱坐標(biāo),再根據(jù)的面積及雙曲線的定義求出,從而可求出點的坐標(biāo),代入雙曲線方程即可得解.【詳解】設(shè),依題意可設(shè),所以,則,故,化簡得,又,所以,因為,點在雙曲線上,且,所以在雙曲線的右支上,所以,則,解得,所以坐標(biāo)為,代入雙曲線方程中,得,解得,故所求漸近線的方程為.故選:B.二?多選題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.已知函數(shù)的部分圖象如圖所示,其中,則()A.的最小正周期為B.C.在上單調(diào)遞減D.在上有6個零點【答案】AD【解析】【詳解】由坐標(biāo)可得周期;由圖象可知對稱軸為,故利用對稱性和周期性可得;將的圖象向后延拓即可判斷CD選項.【分析】依題意得,,則,故A正確;由圖可知對稱軸為,則,又,則,故,故B錯誤;延長的圖象如圖所示,觀察可知,在上先減后增,故C錯誤;在上有6個零點,故D正確.故選:AD.10.已知函數(shù),若函數(shù)為偶函數(shù),則下列說法一定正確的是()A.的圖象關(guān)于直線對稱B.CD.【答案】BCD【解析】【分析】A選項,舉出例子,畫出圖象,得到其不關(guān)于直線對稱;BD選項,為奇函數(shù),得到,BD正確;C選項,二次求導(dǎo),結(jié)合三次函數(shù)圖象特征得到,則,又,故【詳解】A選項,令,則,滿足為偶函數(shù),但的圖象如下,不關(guān)于直線對稱,A錯誤;BD選項,為偶函數(shù),故為奇函數(shù),即,即,故,故點為曲線的對稱中心,故,則,故B,D正確;C選項,由題意得,令,則,由于曲線的對稱中心為,結(jié)合三次函數(shù)的圖象特征可知,,則,又,故,故C正確.故選:BCD.11.19世紀(jì)俄國數(shù)學(xué)家切比雪夫在研究統(tǒng)計的規(guī)律中,用標(biāo)準(zhǔn)差表達(dá)并論證了一個不等式,該不等式被稱為切比雪夫不等式,它可以使人們在隨機變量的分布未知的情況下,對事件做出估計.切比雪夫不等式定義為:若隨機變量具有數(shù)學(xué)期望,方差,則對任意正數(shù),不等式成立.已知某試驗田對一種新型作物進行種植實驗,現(xiàn)抽取部分作物的高度進行調(diào)研,所得數(shù)據(jù)統(tǒng)計如下表所示:作物類別數(shù)量作物平均高度/作物高度的方差雄性作物5030256雌性作物5020361由本次的試種可知,該新型作物的高度受到環(huán)境,肥料等一系列因素的影響,每株作物成長到達(dá)標(biāo)高度的概率為0.6,則下列說法正確的是()A.本次種植實驗中被調(diào)研的所有作物的高度的平均值為25B.本次種植實驗中被調(diào)研的所有作物的高度的方差為313.5C.為了保證下一次種植實驗中至少有的作物的高度達(dá)到預(yù)定達(dá)標(biāo)高度的頻率大于0.3且小于0.9,則根據(jù)切比雪夫不等式可以估計下一次最少種植27株D.經(jīng)過幾次實驗之后,作物最終成長的高度到達(dá)24cm及以上的頻率為0.8,若種植20000株此類作物,則作物存活16000株的概率最大【答案】ACD【解析】【分析】由平均值、方差計算公式可判斷AB,由二項分布結(jié)合切比雪夫不等式可判斷CD.【詳解】所有作物的高度的平均值為,故A正確;所有作物的高度的方差為,故B錯誤;設(shè)作物高度達(dá)到預(yù)定達(dá)標(biāo)高度的數(shù)量為,依題意知,則,若,則,由切比雪夫不等式可得,又,解得,即最少種植27株,故C正確;設(shè)存活株的概率最大,,則,,,則,解得,,解得.又,所以當(dāng)時,最大,故D正確.故選:ACD.三?填空題:本題共3小題,每小題5分,共15分.12.已知為坐標(biāo)原點,拋物線的焦點為,點在拋物線上,則__________.【答案】【解析】【分析】根據(jù)拋物線方程可得點坐標(biāo),進而可.【詳解】依題意得,,解得,故,故答案為:.13.已知在梯形中,,若為邊上靠近的三等分點,且,則__________.【答案】【解析】【分析】結(jié)合圖形,根據(jù)平面向量的線性運算及平面向量的基本定理即可求解.【詳解】如圖所示:因為在梯形中,,若為邊上靠近的三等分點,所以,,所以.又因為,則.故答案為:14.已知,則的最大公約數(shù)為__________.【答案】3333【解析】【詳解】根據(jù)最大公約數(shù)計算方法求解即可.【分析】用表示正整數(shù)的最大公約數(shù),則,而,故,則的最大公約數(shù)為3333.【點睛】方法點睛:求兩個或多個大數(shù)的最大公約數(shù)的方法:質(zhì)因數(shù)分解法:(1)對每個大數(shù)進行質(zhì)因數(shù)分解;(2)找出它們的公共質(zhì)因數(shù);(3)計算公共質(zhì)因數(shù)的最小次冪的乘積,得到最大公約數(shù).四?解答題:本題共5小題,共77分.解答應(yīng)寫出文字說昭,證明過程或演算步驟.15.為了了解某地歲居民的工資情況,研究人員隨機抽取了部分居民進行調(diào)查,所得數(shù)據(jù)統(tǒng)計如下表所示:工資超過3500工資不超過3500合計男性居民200180女性居民280240合計(1)完善上述表格并依據(jù)小概率值的獨立性檢驗,能否認(rèn)為工資的多少與居民的性別具有相關(guān)性?(2)以頻率估計概率,若在該地所有居民中隨機抽取3人,求至少2人工資超過3500的概率.附:0.050.010.0013.8416.63510.828【答案】(1)表格見解析,不能認(rèn)為工資的多少與居民的性別具有相關(guān)性(2).【解析】【分析】(1)根據(jù)列聯(lián)表求解,然后根據(jù)列聯(lián)表,求得值,再與臨界值表對照下結(jié)論;(2)先求得工資超過3500的概率為,再利用獨立重復(fù)試驗的概率求解.【小問1詳解】完善表格如下表所示:

工資超過3500工資不超過3500合計男性居民200180380女性居民280240520合計480420900零假設(shè):依據(jù)小概率值的獨立性檢驗,不能認(rèn)為工資的多少與居民的性別具有相關(guān)性,則,故依據(jù)小概率值的獨立性檢驗,假設(shè)成立,即不能認(rèn)為工資的多少與居民的性別具有相關(guān)性.【小問2詳解】由題意知:工資超過3500的概率為.記至少2人工資超過3500為事件,所以.16.已知數(shù)列的首項為,前項和為,且.(1)求數(shù)列的通項公式;(2)求滿足的的最小值;(3)已知,記數(shù)列的前項和為,求證:.【答案】(1)(2)最小值為(3)證明見解析【解析】【分析】(1)根據(jù)退一相減法可得,再結(jié)合累加法可得通項公式;(2)由通項公式代入不等式,可得的范圍,即可得解;(3)利用裂項相消法可求和,再結(jié)合不等性質(zhì)可得證.【小問1詳解】由已知,則,即,則,,,,等式左右分別相加可得,則;【小問2詳解】由(1)得,且,即,化簡可得,又,即,所以滿足的的最小值為;【小問3詳解】依題意得,,則,又,所以,所以,即.17.已知函數(shù)的導(dǎo)函數(shù)為,若在區(qū)間上單調(diào)遞增,則稱為區(qū)間上的凹函數(shù);若在區(qū)間上單調(diào)遞減,則稱為區(qū)間上的凸函數(shù).已知函數(shù).(1)若在上為凹函數(shù),求實數(shù)的取值范圍;(2)已知,且在上存在零點,求實數(shù)的取值范圍.【答案】(1)(2)【解析】【分析】(1)令,依題意知,對任意的恒成立,利用分離參數(shù)法求解即可;(2)分和兩種情況討論,求出函數(shù)的單調(diào)區(qū)間及極值,進而可得出答案.【小問1詳解】,則,依題意知,對任意的恒成立,則恒成立,令,則,故在上單調(diào)遞增,故,則實數(shù)的取值范圍為;【小問2詳解】依題意得,,若,當(dāng)時,,所以在上無零點,舍去;若,則,令,則,則在上單調(diào)遞減,且,①若,即,此時,則存在,使得,即,故在上單調(diào)遞增,在上單調(diào)遞減,所以,當(dāng)時,,令,解得,因為,且,所以存在唯一的,使得,滿足條件;②若,即,此時在上單調(diào)遞減,又,所以,不合題意,舍去,綜上所述,實數(shù)的取值范圍為.18.已知橢圓過點,,過點的直線與交于,兩點,其中.(1)求橢圓的方程;(2)若直線的斜率為,求的值;(3)已知,直線交軸于點,若四邊形為等腰梯形,求直線的方程.【答案】(1)(2)(3)【解析】【分析】(1)根據(jù)橢圓上的點,代入可得橢圓方程;(2)設(shè)直線方程,聯(lián)立直線與橢圓,結(jié)合韋達(dá)定理,及弦長公式可得解;(3)由四邊形為等腰梯形,可知,設(shè)點的坐標(biāo)為,的中點為,則,要求直線的斜率,只需要轉(zhuǎn)化為求點的坐標(biāo),則有,根據(jù)點斜式可知直線的方程為,可得,設(shè)直線的方程為,聯(lián)立直線與橢圓,結(jié)合韋達(dá)定理可得,求出,,可得所求直線的方程.【小問1詳解】由已知橢圓過點,,則,解得,即橢圓方程為;【小問2詳解】依題意得,直線的方程為,聯(lián)立,整理得,,故,,故;【小問3詳解】因為四邊形為等腰梯形,則必有,即,不妨設(shè)點的坐標(biāo)為,的中點為,則必有,要求直線斜率,只需要轉(zhuǎn)化為求點的坐標(biāo),則有.而,則直線的方程為,令,則有,不妨設(shè)直線的方程為,則有,即,聯(lián)立方程,消去得,則有,,則有,則有,所以,所以,所以,故所求直線的方程為.19.已知四棱錐的底面為平行四邊形,,,,,.(1)求三棱錐外接球的表面積.(2)設(shè)為線段上的點.(i)若,求直線與平面所成角的正弦值.(ii)平面過點,,且平面,探究:是否存在點,使得平面與平面之間所成角的正切值為,若存在,求出的值;若不存在,請說明理由.【答案】(1)(2)(i);(ii)存

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論