湖南省沅江三中2025屆畢業班下學期3月百校大聯考數學試題_第1頁
湖南省沅江三中2025屆畢業班下學期3月百校大聯考數學試題_第2頁
湖南省沅江三中2025屆畢業班下學期3月百校大聯考數學試題_第3頁
湖南省沅江三中2025屆畢業班下學期3月百校大聯考數學試題_第4頁
湖南省沅江三中2025屆畢業班下學期3月百校大聯考數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省沅江三中2025屆畢業班下學期3月百校大聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的奇函數滿足:(其中),且在區間上是減函數,令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.2.在平面直角坐標系中,若不等式組所表示的平面區域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.3.已知函數在上有兩個零點,則的取值范圍是()A. B. C. D.4.3本不同的語文書,2本不同的數學書,從中任意取出2本,取出的書恰好都是數學書的概率是()A. B. C. D.5.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.46.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.7.中國古代用算籌來進行記數,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數時,像阿拉伯記數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.8.函數與的圖象上存在關于直線對稱的點,則的取值范圍是()A. B. C. D.9.已知實數,,函數在上單調遞增,則實數的取值范圍是()A. B. C. D.10.已知復數在復平面內對應的點的坐標為,則下列結論正確的是()A. B.復數的共軛復數是C. D.11.閱讀如圖的程序框圖,運行相應的程序,則輸出的的值為()A. B. C. D.12.已知等式成立,則()A.0 B.5 C.7 D.13二、填空題:本題共4小題,每小題5分,共20分。13.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實數λ的值是__.14.在棱長為6的正方體中,是的中點,點是面,所在平面內的動點,且滿足,則三棱錐的體積的最大值是__________.15.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.16.函數的定義域是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)若,時,在上單調遞減,求的取值范圍;(2)若,,,求證:當時,.18.(12分)等差數列中,.(1)求的通項公式;(2)設,記為數列前項的和,若,求.19.(12分)某工廠為提高生產效率,需引進一條新的生產線投入生產,現有兩條生產線可供選擇,生產線①:有A,B兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.02,0.03.若兩道工序都沒有出現故障,則生產成本為15萬元;若A工序出現故障,則生產成本增加2萬元;若B工序出現故障,則生產成本增加3萬元;若A,B兩道工序都出現故障,則生產成本增加5萬元.生產線②:有a,b兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.04,0.01.若兩道工序都沒有出現故障,則生產成本為14萬元;若a工序出現故障,則生產成本增加8萬元;若b工序出現故障,則生產成本增加5萬元;若a,b兩道工序都出現故障,則生產成本增加13萬元.(1)若選擇生產線①,求生產成本恰好為18萬元的概率;(2)為最大限度節約生產成本,你會給工廠建議選擇哪條生產線?請說明理由.20.(12分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數列中,,且,若數列的前n項和為,求證:.21.(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.22.(10分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】因為,所以,即周期為4,因為為奇函數,所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數對稱性代數表示(1)函數為奇函數,函數為偶函數(定義域關于原點對稱);(2)函數關于點對稱,函數關于直線對稱,(3)函數周期為T,則2.B【解析】

依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區域,要使不等式組所表示的平面區域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.【點睛】本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題3.C【解析】

對函數求導,對a分類討論,分別求得函數的單調性及極值,結合端點處的函數值進行判斷求解.【詳解】∵,.當時,,在上單調遞增,不合題意.當時,,在上單調遞減,也不合題意.當時,則時,,在上單調遞減,時,,在上單調遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導數解決函數零點的問題,考查了函數的單調性及極值問題,屬于中檔題.4.D【解析】

把5本書編號,然后用列舉法列出所有基本事件.計數后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數學書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數學書的只有一種,∴所求概率為.故選:D.【點睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數計算概率.5.D【解析】

利用導數的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數的幾何意義,考查運算求解能力,是基礎題6.A【解析】

根據題意得到,化簡得到,得到答案.【詳解】根據題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉化能力.7.B【解析】

根據題意表示出各位上的數字所對應的算籌即可得答案.【詳解】解:根據題意可得,各個數碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題.8.C【解析】

由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導數研究函數性質的基本方法,考查化歸與轉化等數學思想,考查抽象概括、運算求解等數學能力,屬于難題.9.D【解析】

根據題意,對于函數分2段分析:當,由指數函數的性質分析可得①,當,由導數與函數單調性的關系可得,在上恒成立,變形可得②,再結合函數的單調性,分析可得③,聯立三個式子,分析可得答案.【詳解】解:根據題意,函數在上單調遞增,

當,若為增函數,則①,

當,若為增函數,必有在上恒成立,

變形可得:,

又由,可得在上單調遞減,則,

若在上恒成立,則有②,

若函數在上單調遞增,左邊一段函數的最大值不能大于右邊一段函數的最小值,則需有,③

聯立①②③可得:.

故選:D.【點睛】本題考查函數單調性的性質以及應用,注意分段函數單調性的性質.10.D【解析】

首先求得,然后根據復數乘法運算、共軛復數、復數的模、復數除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數,則,所以A選項不正確;復數的共軛復數是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數的幾何意義,共軛復數,復數的模,復數的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數形結合思想.11.C【解析】

根據給定的程序框圖,計算前幾次的運算規律,得出運算的周期性,確定跳出循環時的n的值,進而求解的值,得到答案.【詳解】由題意,,第1次循環,,滿足判斷條件;第2次循環,,滿足判斷條件;第3次循環,,滿足判斷條件;可得的值滿足以3項為周期的計算規律,所以當時,跳出循環,此時和時的值對應的相同,即.故選:C.【點睛】本題主要考查了循環結構的程序框圖的計算與輸出問題,其中解答中認真審題,得出程序運行時的計算規律是解答的關鍵,著重考查了推理與計算能力.12.D【解析】

根據等式和特征和所求代數式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數學運算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據平面向量的數量積運算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【點睛】本題考查了單位向量和平面向量數量積的運算問題,是中檔題.14.【解析】

根據與相似,,過作于,利用體積公式求解OP最值,根據勾股定理得出,,利用函數單調性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內的動點,且滿足,又,∴與相似∴,即,過作于,設,,∴,化簡得:,,根據函數單調性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數單調性的綜合應用,難度一般.15.【解析】

將四面體補成一個正方體,通過正方體的對角線與球的半徑的關系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.【點睛】本題主要考查了有關求得組合體的結構特征,以及球的表面積的計算,其中巧妙構造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎題.16.【解析】解:因為,故定義域為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】

(1)在上單調遞減等價于在恒成立,分離參數即可解決.(2)先對求導,化簡后根據零點存在性定理判斷唯一零點所在區間,構造函數利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調遞減.∴,.令,,時,;時,,∴在上為減函數,在上為增函數.∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數.又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數,在上為減函數.∴.又,∴,,.∴.,.∴當時,.【點睛】此題考查函數定區間上單調,和零點存在性定理等知識點,難點為找到最值后的構造函數求值域,屬于較難題目.18.(1)(2)【解析】

(1)由基本量法求出公差后可得通項公式;(2)由等差數列前項和公式求得,可求得.【詳解】解:(1)設的公差為,由題設得因為,所以解得,故.(2)由(1)得.所以數列是以2為首項,2為公比的等比數列,所以,由得,解得.【點睛】本題考查求等差數列的通項公式和等比數列的前項和公式,解題方法是基本量法.19.(1)0.0294.(2)應選生產線②.見解析【解析】

(1)由題意轉化條件得A工序不出現故障B工序出現故障,利用相互獨立事件的概率公式即可得解;(2)分別算出兩個生產線增加的生產成本的期望,進而求出兩個生產線的生產成本期望值,比較期望值即可得解.【詳解】(1)若選擇生產線①,生產成本恰好為18萬元,即A工序不出現故障B工序出現故障,故所求的概率為.(2)若選擇生產線①,設增加的生產成本為(萬元),則的可能取值為0,2,3,5.,,,,所以萬元;故選生產線①的生產成本期望值為(萬元).若選生產線②,設增加的生產成本為(萬元),則的可能取值為0,8,5,13.,,,,所以,故選生產線②的生產成本期望值為(萬元),故應選生產線②.【點睛】本題考查了相互獨立事件的概率,考查了離散型隨機變量期望的應用,屬于中檔題.20.(Ⅰ)函數在上單調遞減,在單調遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】

(Ⅰ)先求出函數f(x)的導數,通過解關于導數的不等式,從而求出函數的單調區間;(Ⅱ)設g(x)=f(x)﹣ax,先求出函數g(x)的導數,通過討論a的范圍,得到函數的單調性,從而求出a的最小值;(Ⅲ)先求出數列是以為首項,1為公差的等差數列,,,問題轉化為證明:,通過換元法或數學歸納法進行證明即可.【詳解】解:(Ⅰ)f(x)的定義域為(﹣1,+∞),,當時,f′(x)<2,當時,f′(x)>2,所以函數f(x)在上單調遞減,在單調遞增.(Ⅱ)設,則,因為x≥2,故,(ⅰ)當a≥1時,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調遞減,而g(2)=2,所以對所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當1<a<1時,2<1﹣a<1,若,則g′(x)>2,g(x)單調遞增,而g(2)=2,所以當時,g(x)>2,即f(x)>ax;(ⅲ)當a≤1時,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調遞增,而g(2)=2,所以對所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數列是以為首項,1為公差的等差數列,故,,,?,由(Ⅱ)知a=1時,,x>2,即,x>2.法一:令,得,即因為,所以,故.法二:?下面用數學歸納法證明.(1)當n=1時,令x=1代入,即得,不等式成立(1)假設n=k(k∈N*,k≥1)時,不等式成立,即,則n=k+1時,,令代入,得,即:,由(1)(1)可知不等式對任何n∈N*都成立.故.考點:1利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論