




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省天門仙桃潛江2022-2023學年高三高考測試(一)數學試題文試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正方體的棱長為2,點在線段上,且,平面經過點,則正方體被平面截得的截面面積為()A. B. C. D.2.若數列為等差數列,且滿足,為數列的前項和,則()A. B. C. D.3.已知函數若恒成立,則實數的取值范圍是()A. B. C. D.4.若函數恰有3個零點,則實數的取值范圍是()A. B. C. D.5.已知函數的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調遞增區間為()A. B.C. D.6.已知等差數列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內角為,則的最大值為()A.5 B.11 C.20 D.257.若直線與曲線相切,則()A.3 B. C.2 D.8.設,則A. B. C. D.9.已知全集,函數的定義域為,集合,則下列結論正確的是A. B.C. D.10.在直角中,,,,若,則()A. B. C. D.11.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.212.已知向量,若,則實數的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標__________.14.內角,,的對邊分別為,,,若,則__________.15.的展開式中的系數為____.16.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實數λ的值是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.18.(12分)設函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若函數的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.19.(12分)在平面直角坐標系中,已知點,曲線:(為參數)以原點為極點,軸正半軸建立極坐標系,直線的極坐標方程為.(Ⅰ)判斷點與直線的位置關系并說明理由;(Ⅱ)設直線與曲線的兩個交點分別為,,求的值.20.(12分)已知橢圓:(),與軸負半軸交于,離心率.(1)求橢圓的方程;(2)設直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標.21.(12分)設數列的前n項和滿足,,,(1)證明:數列是等差數列,并求其通項公式﹔(2)設,求證:.22.(10分)已知等比數列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數列的通項公式;(Ⅱ)若,是數列的前項和,求使成立的正整數的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
先根據平面的基本性質確定平面,然后利用面面平行的性質定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個平面,因為平面平面,所以,同理,所以四邊形是平行四邊形.即正方體被平面截的截面.因為,所以,即所以由余弦定理得:所以所以四邊形故選:B【點睛】本題主要考查平面的基本性質,面面平行的性質定理及截面面積的求法,還考查了空間想象和運算求解的能力,屬于中檔題.2.B【解析】
利用等差數列性質,若,則求出,再利用等差數列前項和公式得【詳解】解:因為,由等差數列性質,若,則得,.為數列的前項和,則.故選:.【點睛】本題考查等差數列性質與等差數列前項和.(1)如果為等差數列,若,則.(2)要注意等差數列前項和公式的靈活應用,如.3.D【解析】
由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數的圖像,利用數形結合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當時,不符合題意,只須考慮的情形,當與圖象相切于時,由導數幾何意義,此時,故.故選:D【點睛】此題考查的是函數中恒成立問題,利用了數形結合的思想,屬于難題.4.B【解析】
求導函數,求出函數的極值,利用函數恰有三個零點,即可求實數的取值范圍.【詳解】函數的導數為,令,則或,上單調遞減,上單調遞增,所以0或是函數y的極值點,函數的極值為:,函數恰有三個零點,則實數的取值范圍是:.故選B.【點睛】該題考查的是有關結合函數零點個數,來確定參數的取值范圍的問題,在解題的過程中,注意應用導數研究函數圖象的走向,利用數形結合思想,轉化為函數圖象間交點個數的問題,難度不大.5.D【解析】
先由函數的周期和圖象的平移后的函數的圖象性質得出函數的解析式,從而得出的解析式,再根據正弦函數的單調遞增區間得出函數的單調遞增區間,可得選項.【詳解】因為函數的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區間是:,,由,,得:,,所以函數的單調遞增區間為().故選:D.【點睛】本題主要考查正弦型函數的周期性,對稱性,單調性,圖象的平移,在進行圖象的平移時,注意自變量的系數,屬于中檔題.6.D【解析】
由公差d=-2可知數列單調遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數列的公差為-2,可知數列單調遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.7.A【解析】
設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數的問題,涉及到的知識點有導數的幾何意義,直線方程的點斜式,屬于簡單題目.8.C【解析】分析:利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡復數,然后求解復數的模.詳解:,則,故選c.點睛:復數是高考中的必考知識,主要考查復數的概念及復數的運算.要注意對實部、虛部的理解,掌握純虛數、共軛復數這些重要概念,復數的運算主要考查除法運算,通過分母實數化轉化為復數的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.9.A【解析】
求函數定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數的定義域,還是函數的值域,是不等式的解集還是曲線上的點集,都由代表元決定.10.C【解析】
在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點睛】本題考查向量的加減運算和數量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.11.C【解析】
由圖像用分段函數表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數形結合,數學運算的能力,屬于中檔題.12.D【解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實數的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點睛】本題考查了向量的數量積,考查了向量的坐標運算.對于向量問題,若已知垂直,通常可得到兩個向量的數量積為0,繼而結合條件進行化簡、整理.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
依題意畫圖,設,根據圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【詳解】解:依題意畫圖,設以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設,則.解得,則.故答案為:【點睛】本題考查了直線與圓的位置關系,考查了兩點間的距離公式,點到直線的距離公式,是基礎題.14.【解析】∵,∴,即,∴,∴.15.28【解析】
將已知式轉化為,則的展開式中的系數中的系數,根據二項式展開式可求得其值.【詳解】,所以的展開式中的系數就是中的系數,而中的系數為,展開式中的系數為故答案為:28.【點睛】本題考查二項式展開式中的某特定項的系數,關鍵在于將原表達式化簡將三項的冪的形式轉化為可求的二項式的形式,屬于基礎題.16.【解析】
根據平面向量的數量積運算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【點睛】本題考查了單位向量和平面向量數量積的運算問題,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)根據正弦定理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學生的計算能力.18.(1)(2)【解析】
(Ⅰ)當時,不等式為.若,則,解得或,結合得或.若,則,不等式恒成立,結合得.綜上所述,不等式解集為.(Ⅱ)則的圖象與直線所圍成的四邊形為梯形,令,得,令,得,則梯形上底為,下底為11,高為..化簡得,解得,結合,得的取值范圍為.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.19.(Ⅰ)點在直線上;見解析(Ⅱ)【解析】
(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)根據直線的參數方程中參數的幾何意義可得.【詳解】(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)直線的參數方程為(為參數),曲線的普通方程為,將直線的參數方程代入曲線的普通方程得,設兩根為,,所以,,故與異號,所以,,所以.【點睛】本題考查在極坐標參數方程中方程互化,還考查了直線的參數方程中參數的幾何意義,屬于中檔題.20.(1)(2)證明見解析;定點坐標為【解析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時滿足∴∴直線恒過定點【點睛】涉及橢圓的弦長、中點、距離等相關問題時,一般利用根與系數的關系采用“設而不求”“整體帶入”等解法.21.(1)證明見解析,;(2)證明見解析【解析】
(1)由,作差得到,進一步得到,再作差即可得到,從而使問題得到解決;(2),求和即可.【詳解】(1),,兩式相減:①用換,得②②—①,得,即,所以數列是等差數列,又,∴,,公差,所以.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國長期演進(LTE)基礎架構行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國鍋爐渦輪發電機設備行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國鎧裝電纜行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國鐵路車輪行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國鋼化玻璃膜行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國金銀珠寶首飾行業市場發展分析及發展前景與投資研究報告
- 2025-2030中國金屬鉿塊行業供需現狀與前景策略分析研究報告
- 2025-2030中國金屬剪刀行業市場發展趨勢與前景展望戰略分析研究報告
- 2025-2030中國重癥監護系統行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國遮陽篷面料行業市場發展趨勢與前景展望戰略研究報告
- 2023年北京市農林科學院事業單位招聘(共500題含答案解析)筆試歷年難、易錯考點試題含答案附詳解
- 尿崩癥診療規范內科學診療規范診療指南2023版
- 3D打印實訓指導書
- 除草機器人簡介
- 當代文學第一章1949-1966年的文學思潮
- 抽油井檢泵作業課件
- a320飛機空調系統工作原理與使用維護分析
- 施工機具進場檢查驗收記錄
- 《液壓與氣動技術項目教程》高職配套教學課件
- 2022年七步洗手法操作考核評分標準
- 過敏性紫癜的護理PPT課件(PPT 33頁)
評論
0/150
提交評論