




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省十堰市張灣區東風高中2023年高考沖刺模擬(五)數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,若,則實數的值為()A. B. C. D.2.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.3.展開項中的常數項為A.1 B.11 C.-19 D.514.小明有3本作業本,小波有4本作業本,將這7本作業本混放在-起,小明從中任取兩本.則他取到的均是自己的作業本的概率為()A. B. C. D.5.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.66.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)7.設,命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根8.已知集合,,則A. B.C. D.9.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.10.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.11.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.12.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數是()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知圓C:經過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.14.已知等差數列的前n項和為Sn,若,則____.15.設為偶函數,且當時,;當時,.關于函數的零點,有下列三個命題:①當時,存在實數m,使函數恰有5個不同的零點;②若,函數的零點不超過4個,則;③對,,函數恰有4個不同的零點,且這4個零點可以組成等差數列.其中,正確命題的序號是_______.16.在等差數列()中,若,,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知非零實數滿足.(1)求證:;(2)是否存在實數,使得恒成立?若存在,求出實數的取值范圍;若不存在,請說明理由18.(12分)為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數據,繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數,求的分布列;(3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結果)19.(12分)已知函數,,若存在實數使成立,求實數的取值范圍.20.(12分)某工廠生產某種電子產品,每件產品不合格的概率均為,現工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數越少;(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數.21.(12分)選修4-5:不等式選講已知函數f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當m=7時,求函數f(x)的定義域;(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.22.(10分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實數的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點睛】本題考查了向量的數量積,考查了向量的坐標運算.對于向量問題,若已知垂直,通常可得到兩個向量的數量積為0,繼而結合條件進行化簡、整理.2.C【解析】
設,根據導數的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設,則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【點睛】本題考查直線與圓位置關系、直線與拋物線位置關系,拋物線兩切點所在直線求解是解題的關鍵,屬于中檔題.3.B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.4.A【解析】
利用計算即可,其中表示事件A所包含的基本事件個數,為基本事件總數.【詳解】從7本作業本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.5.C【解析】
根據列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數量積的運算,考查向量模的求法,屬于基礎題.6.C【解析】
先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.7.A【解析】
只需將“存在”改成“任意”,有實根改成無實根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A【點睛】本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結論,是一道基礎題.8.D【解析】
因為,,所以,,故選D.9.D【解析】
以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數量積的運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.10.C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.11.D【解析】
可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.12.C【解析】
建立空間直角坐標系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數.【詳解】設正方體邊長為,建立空間直角坐標系如下圖所示,,.①,,所以,故①正確.②,,不存在實數使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關系的向量判斷方法,考查運算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【點睛】本題考查了拋物線的準線、圓的弦長公式.14.【解析】
由,,成等差數列,代入可得的值.【詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數列前n項和的性質,相對不難.15.①②③【解析】
根據偶函數的圖象關于軸對稱,利用已知中的條件作出偶函數的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當時又因為為偶函數可畫出的圖象,如下所示:可知當時有5個不同的零點;故①正確;若,函數的零點不超過4個,即,與的交點不超過4個,時恒成立又當時,在上恒成立在上恒成立由于偶函數的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數方程思想,數形結合思想,屬于難題.16.-15【解析】
是等差數列,則有,可得的值,再由可得,計算即得.【詳解】數列是等差數列,,又,,,故.故答案為:【點睛】本題考查等差數列的性質,也可以由已知條件求出和公差,再計算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)存在,【解析】
(1)利用作差法即可證出.(2)將不等式通分化簡可得,討論或,分離參數,利用基本不等式即可求解.【詳解】又即即①當時,即恒成立(當且僅當時取等號),故②當時恒成立(當且僅當時取等號),故綜上,【點睛】本題考查了作差法證明不等式、基本不等式求最值、考查了分類討論的思想,屬于基礎題.18.(1)(2)詳見解析(3)初中生平均參加公益勞動時間較長【解析】
(1)由圖表直接利用隨機事件的概率公式求解;(2)X的所有可能取值為0,1,2,3.由古典概型概率公式求概率,則分布列可求;(3)由圖表直接判斷結果.【詳解】(1)100名學生中共有男生48名,其中共有20人參加公益勞動時間在,設男生中隨機抽取一人,抽到的男生參加公益勞動時間在的事件為,那么;(2)的所有可能取值為0,1,2,3.∴;;;.∴隨機變量的分布列為:(3)由圖表可知,初中生平均參加公益勞動時間較長.【點睛】本小題主要考查古典概型的計算,考查超幾何分布的分布列的計算,屬于基礎題.19.【解析】試題分析:先將問題“存在實數使成立”轉化為“求函數的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數的取值范圍是.考點:柯西不等式即運用和轉化與化歸的數學思想的運用.20.(1)見解析,(2)(i)見解析(ii)時平均檢驗次數最少,約為594次.【解析】
(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據函數的單調性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調遞增,故越小,越小,即所需平均檢驗次數越少,該方案越合理記當且取最小值時,該方案最合理,因為,,所以時平均檢驗次數最少,約為次.【點睛】本題考查了離散型隨機變量的分布列、數學期望,考查了分析問題、解決問題的能力,屬于中檔題.21.(1),(2)【解析】試題分析:用零點分區間討論法解含絕對值的不等式,根據絕對值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數f(x)的定義域為(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- d級危房維修施工方案
- 武漢工商學院《形勢與政策(四)》2023-2024學年第二學期期末試卷
- 大堂風機拆除施工方案
- 閬中污水管網施工方案
- 南京城市職業學院《概率統計B》2023-2024學年第二學期期末試卷
- 上海出版印刷高等專科學校《矩陣理論與應用》2023-2024學年第二學期期末試卷
- 2025至2031年中國油水艙底漆行業投資前景及策略咨詢研究報告
- 斜拉橋樁基礎施工方案
- 江西建設職業技術學院《CAD設計》2023-2024學年第二學期期末試卷
- 臨時雨污水接駁施工方案
- 《淘寶開網店詳解》課件
- 【八年級下冊地理中圖北京版】期中真題必刷卷B-【期中真題必刷卷】(北京專用)(解析版)
- 鉆床安全技術課件
- 新媒體時代農產品品牌營銷策略
- 西工大附中2025屆高考英語一模試卷含解析
- 《房屋建筑與裝飾工程工程量計算規范》課件
- 《支付寶相關功能》課件
- 車隊運營中的司機管理策略研究
- 0-3歲嬰幼兒感覺統合訓練知到智慧樹章節測試課后答案2024年秋杭州師范大學
- 新生兒臍部出血的護理
- 實驗室的智能化設計與建設
評論
0/150
提交評論