




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省衡陽市2024年中考數學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.為豐富學生課外活動,某校積極開展社團活動,開設的體育社團有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學生可根據自己的愛好選擇一項,李老師對八年級同學選擇體育社團情況進行調查統計,制成了兩幅不完整的統計圖(如圖),則以下結論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數占體育社團人數的D.據此估計全校1000名八年級同學,選擇科目B的有140人2.下列運算正確的是()A.a2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=63.衡陽市某生態示范園計劃種植一批梨樹,原計劃總產值30萬千克,為了滿足市場需求,現決定改良梨樹品種,改良后平均每畝產量是原來的1.5倍,總產量比原計劃增加了6萬千克,種植畝數減少了10畝,則原來平均每畝產量是多少萬千克?設原來平均每畝產量為x萬千克,根據題意,列方程為()A.﹣=10 B.﹣=10C.﹣=10 D.+=104.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是()A. B. C. D.5.某校體育節有13名同學參加女子百米賽跑,它們預賽的成績各不相同,取前6名參加決賽.小穎已經知道了自己的成績,她想知道自己能否進入決賽,還需要知道這13名同學成績的()A.方差B.極差C.中位數D.平均數6.2018年春運,全國旅客發送量達29.8億人次,用科學記數法表示29.8億,正確的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10107.有下列四種說法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓.其中,錯誤的說法有()A.1種 B.2種 C.3種 D.4種8.已知空氣的單位體積質量是0.001239g/cm3,則用科學記數法表示該數為()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm39.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.10.如果y=++3,那么yx的算術平方根是()A.2 B.3 C.9 D.±3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,點D、E分別在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,則BC=_____.12.拋物線(為非零實數)的頂點坐標為_____________.13.如圖,E是?ABCD的邊AD上一點,AE=1214.如圖,AB是⊙O的直徑,AB=2,點C在⊙O上,∠CAB=30°,D為的中點,P是直徑AB上一動點,則PC+PD的最小值為________.15.用半徑為6cm,圓心角為120°的扇形圍成一個圓錐,則圓錐的底面圓半徑為_______cm.16.拋物線y=ax2+bx+c的頂點為D(-1,2),與x軸的一個交點A在點(-3,1)和(-2,1)之間,其部分圖象如圖,則以下結論:①b2-4ac<1;②當x>-1時y隨x增大而減小;③a+b+c<1;④若方程ax2+bx+c-m=1沒有實數根,則m>2;
⑤3a+c<1.其中,正確結論的序號是________________.17.已知關于x方程x2﹣3x+a=0有一個根為1,則方程的另一個根為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點D,延長BD至點E,且BD=2DE,連接AE.(1)求線段CD的長;(2)求△ADE的面積.19.(5分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.20.(8分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.21.(10分)如圖,直線AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度數.22.(10分)已知拋物線經過點,.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點為圖形中的拋物線上一點,且點的橫坐標為,過點作軸,交線段于點.當為等腰直角三角形時,求的值;(3)點是直線上一點,且點的橫坐標為,以線段為邊作正方形,且使正方形與圖形在直線的同側,當,兩點中只有一個點在圖形的內部時,請直接寫出的取值范圍.23.(12分)有一項工作,由甲、乙合作完成,合作一段時間后,乙改進了技術,提高了工作效率.圖①表示甲、乙合作完成的工作量y(件)與工作時間t(時)的函數圖象.圖②分別表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)與工作時間t(時)的函數圖象.(1)求甲5時完成的工作量;(2)求y甲、y乙與t的函數關系式(寫出自變量t的取值范圍);(3)求乙提高工作效率后,再工作幾個小時與甲完成的工作量相等?24.(14分)某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數,成績達到6分或6分以上為合格,達到9分或10分為優秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統計圖和成績統計分析表如下,其中七年級代表隊得6分、10分的選手人數分別為a、b.隊別平均分中位數方差合格率優秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據圖表中的數據,求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優秀率均高于八年級;所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
A選項先求出調查的學生人數,再求選科目E的人數來判定,B選項先求出A科目人數,再利用×360°判定即可,C選項中由D的人數及總人數即可判定,D選項利用總人數乘以樣本中B人數所占比例即可判定.【詳解】解:調查的學生人數為:12÷24%=50(人),選科目E的人數為:50×10%=5(人),故A選項正確,選科目A的人數為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項錯誤,選科目D的人數為10,總人數為50人,所以選科目D的人數占體育社團人數的,故C選項正確,估計全校1000名八年級同學,選擇科目B的有1000×=140人,故D選項正確;故選B.【點睛】本題主要考查了條形統計圖及扇形統計圖,解題的關鍵是讀懂統計圖,從統計圖中找到準確信息.2、D【解析】
運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.3、A【解析】
根據題意可得等量關系:原計劃種植的畝數-改良后種植的畝數=10畝,根據等量關系列出方程即可.【詳解】設原計劃每畝平均產量萬千克,則改良后平均每畝產量為萬千克,根據題意列方程為:.故選:.【點睛】此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系.4、D【解析】
根據直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據等邊對等角的性質可得∠A=∠ACD,然后根據正切函數的定義列式求出∠A的正切值,即為tan∠ACD的值.【詳解】∵CD是AB邊上的中線,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故選D.【點睛】本題考查了銳角三角函數的定義,直角三角形斜邊上的中線等于斜邊的一半的性質,等邊對等角的性質,求出∠A=∠ACD是解本題的關鍵.5、C【解析】13個不同的分數按從小到大排序后,中位數及中位數之后的共有7個數,故只要知道自己的分數和中位數就可以知道是否獲獎了.故選C.6、B【解析】
根據科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,且為這個數的整數位數減1,由此即可解答.【詳解】29.8億用科學記數法表示為:29.8億=2980000000=2.98×1.故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.7、B【解析】
根據弦的定義、弧的定義、以及確定圓的條件即可解決.【詳解】解:圓確定的條件是確定圓心與半徑,是假命題,故此說法錯誤;直徑是弦,直徑是圓內最長的弦,是真命題,故此說法正確;弦是直徑,只有過圓心的弦才是直徑,是假命題,故此說法錯誤;④半圓是弧,但弧不一定是半圓,圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫半圓,所以半圓是弧.但比半圓大的弧是優弧,比半圓小的弧是劣弧,不是所有的弧都是半圓,是真命題,故此說法正確.
其中錯誤說法的是①③兩個.故選B.【點睛】本題考查弦與直徑的區別,弧與半圓的區別,及確定圓的條件,不要將弦與直徑、弧與半圓混淆.8、A【解析】試題分析:0.001219=1.219×10﹣1.故選A.考點:科學記數法—表示較小的數.9、A【解析】
根據應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.10、B【解析】解:由題意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,則yx=9,9的算術平方根是1.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
先由DE∥BC,可證得△ADE∽△ABC,進而可根據相似三角形得到的比例線段求得BC的長.【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案為:1.【點睛】考查了相似三角形的性質和判定,關鍵是求出相似后得出比例式,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.12、【解析】【分析】將拋物線的解析式由一般式化為頂點式,即可得到頂點坐標.【詳解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以拋物線的頂點坐標為(-1,1-m),故答案為(-1,1-m).【點睛】本題考查了拋物線的頂點坐標,把拋物線的解析式轉化為頂點式是解題的關鍵.13、4【解析】∵AE=12ED,AE+ED=AD,∴ED=2∵四邊形ABCD是平行四邊形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案為4.14、【解析】
作出D關于AB的對稱點D’,則PC+PD的最小值就是CD’的長度,在△COD'中根據邊角關系即可求解.【詳解】解:如圖:作出D關于AB的對稱點D’,連接OC,OD',CD'.又∵點C在⊙O上,∠CAB=30°,D為弧BC的中點,即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,勾股定理,垂徑定理,正確作出輔助線是解題的關鍵.15、1.【解析】
解:設圓錐的底面圓半徑為r,根據題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.【點睛】本題考查圓錐的計算,掌握公式正確計算是解題關鍵.16、②③④⑤【解析】試題解析:∵二次函數與x軸有兩個交點,∴b2-4ac>1,故①錯誤,觀察圖象可知:當x>-1時,y隨x增大而減小,故②正確,∵拋物線與x軸的另一個交點為在(1,1)和(1,1)之間,∴x=1時,y=a+b+c<1,故③正確,∵當m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=1沒有實數根,故④正確,∵對稱軸x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正確,故答案為②③④⑤.17、1【解析】分析:設方程的另一個根為m,根據兩根之和等于-,即可得出關于m的一元一次方程,解之即可得出結論.詳解:設方程的另一個根為m,根據題意得:1+m=3,解得:m=1.故答案為1.點睛:本題考查了根與系數的關系,牢記兩根之和等于-是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)43;(2)S【解析】分析:(1)過點D作DH⊥AB,根據角平分線的性質得到DH=DC根據正弦的定義列出方程,解方程即可;(2)根據三角形的面積公式計算.詳解:(1)過點D作DH⊥AB,垂足為點H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,則AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.∵sin∠BAC=HDAD=(2)S△ABD∵BD=2DE,∴S△ABD點睛:本題考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.19、(1)見解析;(2).【解析】分析:(1)由AB是直徑可得BE⊥AC,點E為AC的中點,可知BE垂直平分線段AC,從而結論可證;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設AE=x,BE=2x,由勾股定理求出AE、BE、AC的長.作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.詳解:(1)證明:連接BE.∵AB是⊙O的直徑,∴∠AEB=90°,∴BE⊥AC,而點E為AC的中點,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF為切線,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,設AE=x,則BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如圖,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,FC==.點睛:本題考查了圓周角定理的推論,線段垂直平分線的判定與性質,切線的性質,勾股定理,相似三角形的判定與性質,平行線分線段成比例定理,銳角三角函數等知識點及見比設參的數學思想,得到BE垂直平分AC是解(1)的關鍵,得到Rt△ACH∽Rt△BAC是解(2)的關鍵.20、證明見解析.【解析】試題分析:首先根據等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進而得到∠C=∠D,根據等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點:等腰三角形的性質與判定,平行線的性質21、50°.【解析】
試題分析:由平行線的性質得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到結論.解:∵AB∥CD,∴∠ABC=∠1=65°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDE=180°﹣∠ABD=50°,∴∠2=∠BDE=50°.【點評】本題考查了平行線的性質和角平分線定義等知識點,解此題的關鍵是求出∠ABD的度數,題目較好,難度不大.22、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.【解析】
(1)把點,代入拋物線得關于a,b的二元一次方程組,解出這個方程組即可;(2)根據題意畫出圖形,分三種情況進行討論;(3)作出圖形,把其中一點恰好在拋物線上時算出,再確定其取值范圍.【詳解】解:(1)依題意,得:解得:∴此拋物線的解析式;(2)設直線AB的解析式為y=kx+b,依題意得:解得:∴直線AB的解析式為y=-x.∵點P的橫坐標為m,且在拋物線上,∴點P的坐標為(m,)∵軸,且點Q有線段AB上,∴點Q的坐標為(m,-m)①當PQ=AP時,如圖,∵∠APQ=90°,軸,∴解得,m=-2或m=1(舍去)②當AQ=AP時,如圖,過點A作AC⊥PQ于C,∵為等腰直角三角形,∴2AC=PQ即m=1(舍去)或m=-1.綜上所述,當為等腰直角三角形時,求的值是-2惑-1.;(3)①如圖,當n<1時,依題意可知C,D的橫坐標相同,CE=2(1-n)∴點E的坐標為(n,n-2)當點E恰好在拋物線上時,解得,n=-1.∴此時n的取值范圍-1≤n<1.②如圖,當n>1時,依題可知點E的坐標為(2-n,-n)當點E在拋物線上時,解得,n=3或n=1.∵n>1.∴n=3.∴此時n的取值范圍1<n≤3.綜上所述,n的取值范圍為-1≤n<1或1<n≤3.【點睛】本題主要考查了二次函數與幾何圖形的綜合應用,掌握相關幾何圖形的性質和二次函數的性質是解題的關鍵.23
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025服務協議與勞動合同有何關聯
- 2025企業辦公租賃合同范本標準版
- 2025環保設備購銷合同
- 機構合作框架協議書范本
- 2025煤炭買賣合同協議范本
- 設備買賣合同書范本
- 域名轉讓合同范本
- 2025年三方委托合同樣本:三方委托合同范本
- 冰球護具轉讓協議書
- 2025年03月湖南婁底市市直事業單位引進高層次和急需緊缺人才集中組考公開招聘21人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 化工單元操作知到智慧樹章節測試課后答案2024年秋煙臺職業學院
- 化肥利用率研究
- 《中華人民共和國突發事件應對法》知識培訓
- 麻風分枝桿菌感染
- 2025年4月自考13887經濟學原理中級押題
- 電磁場與電磁波(第五版)完整全套教學課件
- 2024年山東省青島市中考數學試卷(附答案)
- 《第1節-原子結構與元素性質》(第1課時)-課件
- 糧倉項目背景及必要性分析
- 人教版數學四年級下冊3運算定律《解決問題策略的多樣性》說課稿
- 注射相關感染預防與控制(全文)
評論
0/150
提交評論