福建省晉江市永春縣第一中學2024-2025學年高三第三次(5月)(三模)數學試題試卷含解析_第1頁
福建省晉江市永春縣第一中學2024-2025學年高三第三次(5月)(三模)數學試題試卷含解析_第2頁
福建省晉江市永春縣第一中學2024-2025學年高三第三次(5月)(三模)數學試題試卷含解析_第3頁
福建省晉江市永春縣第一中學2024-2025學年高三第三次(5月)(三模)數學試題試卷含解析_第4頁
福建省晉江市永春縣第一中學2024-2025學年高三第三次(5月)(三模)數學試題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省晉江市永春縣第一中學2024-2025學年高三第三次(5月)(三模)數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.二項式的展開式中,常數項為()A. B.80 C. D.1602.若的二項展開式中的系數是40,則正整數的值為()A.4 B.5 C.6 D.73.在平行四邊形中,若則()A. B. C. D.4.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.5.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.86.已知非零向量,滿足,,則與的夾角為()A. B. C. D.7.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.8.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.9.已知集合,,若AB,則實數的取值范圍是()A. B. C. D.10.若,則下列關系式正確的個數是()①②③④A.1 B.2 C.3 D.411.已知實數,則的大小關系是()A. B. C. D.12.將4名大學生分配到3個鄉鎮去當村官,每個鄉鎮至少一名,則不同的分配方案種數是()A.18種 B.36種 C.54種 D.72種二、填空題:本題共4小題,每小題5分,共20分。13.已知實數,滿足,則目標函數的最小值為__________.14.電影《厲害了,我的國》于2018年3月正式登陸全國院線,網友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”《厲害了,我的國》正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國》,并把標識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進行猜測:甲說:第1個盒子里放的是,第3個盒子里放的是乙說:第2個盒子里放的是,第3個盒子里放的是丙說:第4個盒子里放的是,第2個盒子里放的是丁說:第4個盒子里放的是,第3個盒子里放的是小明說:“四位朋友你們都只說對了一半”可以預測,第4個盒子里放的電影票為_________15.已知雙曲線的兩條漸近線方程為,若頂點到漸近線的距離為1,則雙曲線方程為.16.在數列中,已知,則數列的的前項和為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查.各組人數統計如下:小組甲乙丙丁人數12969(1)從參加問卷調查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數,求隨機變量的分布列和數學期望.18.(12分)設,函數.(1)當時,求在內的極值;(2)設函數,當有兩個極值點時,總有,求實數的值.19.(12分)設函數,.(1)求函數的極值;(2)對任意,都有,求實數a的取值范圍.20.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.21.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數216362574以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.22.(10分)設函數f(x)=x2?4xsinx?4cosx.(1)討論函數f(x)在[?π,π]上的單調性;(2)證明:函數f(x)在R上有且僅有兩個零點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

求出二項式的展開式的通式,再令的次數為零,可得結果.【詳解】解:二項式展開式的通式為,令,解得,則常數項為.故選:A.本題考查二項式定理指定項的求解,關鍵是熟練應用二項展開式的通式,是基礎題.2.B【解析】

先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.本題考查二項展開式問題,屬于基礎題3.C【解析】

由,,利用平面向量的數量積運算,先求得利用平行四邊形的性質可得結果.【詳解】如圖所示,

平行四邊形中,,

,,,

因為,

所以

,

,所以,故選C.本題主要考查向量的幾何運算以及平面向量數量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).4.D【解析】

建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設拋物線,代入點,可得∴焦點為,即焦點為中點,設焦點為,,,∴.故選:D本小題考查圓錐曲線的概念,拋物線的性質,兩點間的距離等基礎知識;考查運算求解能力,空間想象能力,推理論證能力,應用意識.5.A【解析】

由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.6.B【解析】

由平面向量垂直的數量積關系化簡,即可由平面向量數量積定義求得與的夾角.【詳解】根據平面向量數量積的垂直關系可得,,所以,即,由平面向量數量積定義可得,所以,而,即與的夾角為.故選:B本題考查了平面向量數量積的運算,平面向量夾角的求法,屬于基礎題.7.B【解析】

先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.8.C【解析】

設M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據中位線定理,結合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據題意畫出圖形:設M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C此題考查異面直線夾角,關鍵點通過平移將異面直線夾角轉化為同一平面內的夾角,屬于較易題目.9.D【解析】

先化簡,再根據,且AB求解.【詳解】因為,又因為,且AB,所以.故選:D本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.10.D【解析】

a,b可看成是與和交點的橫坐標,畫出圖象,數形結合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.本題考查利用函數圖象比較大小,考查學生數形結合的思想,是一道中檔題.11.B【解析】

根據,利用指數函數對數函數的單調性即可得出.【詳解】解:∵,∴,,.∴.故選:B.本題考查了指數函數對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.12.B【解析】

把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉鎮即得.【詳解】把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉鎮,則不同的分配方案有種.故選:.本題考查排列組合,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.-1【解析】

作出不等式對應的平面區域,利用線性規劃的知識,通過平移即可求z的最大值.【詳解】作出實數x,y滿足對應的平面區域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當直線yx經過點A時,直線yx的縱截距最小,此時z最小.由,得A(﹣1,﹣1),此時z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.本題主要考查線性規劃的應用,利用數形結合是解決線性規劃題目的常用方法,是基礎題14.A或D【解析】

分別假設每一個人一半是對的,然后分別進行驗證即可.【詳解】解:假設甲說:第1個盒子里面放的是是對的,則乙說:第3個盒子里面放的是是對的,丙說:第2個盒子里面放的是是對的,丁說:第4個盒子里面放的是是對的,由此可知第4個盒子里面放的是;假設甲說:第3個盒子里面放的是是對的,則丙說:第4個盒子里面放的是是對的,乙說:第2個盒子里面放的是是對的,丁說:第3個盒子里面放的是是對的,由此可知第4個盒子里面放的是.故第4個盒子里面放的電影票為或.故答案為:或本題考查簡單的合情推理,考查推理論證能力、分析判斷能力、歸納總結能力,屬于中檔題.15.【解析】由已知,即,取雙曲線頂點及漸近線,則頂點到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.16.【解析】

由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析,【解析】

(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調查的12名學生中隨機抽取2人,基本事件總數為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數學期望.【詳解】(1)由題設易得,問卷調查從四個小組中抽取的人數分別為4,3,2,3(人),從參加問卷調查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調查的12名學生中,來自甲、丙兩小組的學生人數分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為此題考查概率的求法,考查離散型隨機變量的分布列和數學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.18.(1)極大值是,無極小值;(2)【解析】

(1)當時,可求得,令,利用導數可判斷的單調性并得其零點,從而可得原函數的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數后轉化為求函數的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調遞減,又因為,故時,總有,所以在上單調遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當時,不等式恒成立,即.當時,恒成立,即,令,易證是上的減函數.因此,當時,,故.當時,恒成立,即,因此,當時,所以.綜上所述,.本題考查利用導數求函數的最值、研究函數的極值等知識,考查分類討論思想、轉化思想,考查學生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.19.(1)當時,無極值;當時,極小值為;(2).【解析】

(1)求導,對參數進行分類討論,即可容易求得函數的極值;(2)構造函數,兩次求導,根據函數單調性,由恒成立問題求參數范圍即可.【詳解】(1)依題,當時,,函數在上單調遞增,此時函數無極值;當時,令,得,令,得所以函數在上單調遞增,在上單調遞減.此時函數有極小值,且極小值為.綜上:當時,函數無極值;當時,函數有極小值,極小值為.(2)令易得且,令所以,因為,,從而,所以,在上單調遞增.又若,則所以在上單調遞增,從而,所以時滿足題意.若,所以,,在中,令,由(1)的單調性可知,有最小值,從而.所以所以,由零點存在性定理:,使且在上單調遞減,在上單調遞增.所以當時,.故當,不成立.綜上所述:的取值范圍為.本題考查利用導數研究含參函數的極值,涉及由恒成立問題求參數范圍的問題,屬壓軸題.20.(1)證明見解析;(2).【解析】

(1)取中點,連接,根據等腰三角形的性質得到,利用全等三角形證得,由此證得平面,進而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點,連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積本小題主要考查面面垂直的證明,考查錐體體積計算,考查空間想象能力和邏輯推理能力,屬于中檔題.21.(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫數據,求出最高氣溫位于區間[20,25)和最高氣溫低于20的天數,由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數據,得到最高氣溫位于區間[20,25)和最高氣溫低于20的天數為2+16+36=54,根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當溫度大于等于25℃時,需求量為500,Y=450×2=900

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論