惠安廣海中學2023-2024學年中考一模數學試題含解析_第1頁
惠安廣海中學2023-2024學年中考一模數學試題含解析_第2頁
惠安廣海中學2023-2024學年中考一模數學試題含解析_第3頁
惠安廣海中學2023-2024學年中考一模數學試題含解析_第4頁
惠安廣海中學2023-2024學年中考一模數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

惠安廣海中學2023-2024學年中考一模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣22.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關系是()A.相交B.相切C.相離D.無法確定3.一個多邊形的邊數由原來的3增加到n時(n>3,且n為正整數),它的外角和()A.增加(n﹣2)×180° B.減小(n﹣2)×180°C.增加(n﹣1)×180° D.沒有改變4.如圖,?ABCD的對角線AC、BD相交于點O,且AC+BD=16,CD=6,則△ABO的周長是()A.10 B.14 C.20 D.225.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設矩形面積是xm2,三角形面積是ym2,則根據題意,可列出二元一次方程組為()A. B. C. D.6.如圖,在平面直角坐標系中,是反比例函數的圖像上一點,過點做軸于點,若的面積為2,則的值是()A.-2 B.2 C.-4 D.47.已知x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,下列結論一定正確的是()A.x1≠x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<08.某校120名學生某一周用于閱讀課外書籍的時間的頻率分布直方圖如圖所示.其中閱讀時間是8~10小時的頻數和頻率分別是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.259.若一組數據2,3,4,5,x的平均數與中位數相等,則實數x的值不可能是()A.6 B.3.5 C.2.5 D.110.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數是()A.8B.9C.10D.11二、填空題(本大題共6個小題,每小題3分,共18分)11.計算(+)(-)的結果等于________.12.如圖AB是直徑,C、D、E為圓周上的點,則______.13.二十四節氣列入聯合國教科文組織人類非物質文化遺產代表作名錄.太陽運行的軌道是一個圓形,古人將之稱作“黃道”,并把黃道分為24份,每15度就是一個節氣,統稱“二十四節氣”.這一時間認知體系被譽為“中國的第五大發明”.如圖,指針落在驚蟄、春分、清明區域的概率是_____.14.若a+b=5,ab=3,則a2+b2=_____.15.如圖,在矩形ABCD中,DE⊥AC,垂足為E,且tan∠ADE=,AC=5,則AB的長____.16.若代數式有意義,則實數x的取值范圍是____.三、解答題(共8題,共72分)17.(8分)如圖,已知△ABC中,AB=AC=5,cosA=.求底邊BC的長.18.(8分)如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為BC邊上的點,AB=BD,反比例函數在第一象限內的圖象經過點D(m,2)和AB邊上的點E(n,).(1)求m、n的值和反比例函數的表達式.(2)將矩形OABC的一角折疊,使點O與點D重合,折痕分別與x軸,y軸正半軸交于點F,G,求線段FG的長.19.(8分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.20.(8分)解不等式,并把解集在數軸上表示出來.21.(8分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.22.(10分)如圖,在規格為8×8的邊長為1個單位的正方形網格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.(1)畫出△ABC關于直線n的對稱圖形△A′B′C′;(2)直線m上存在一點P,使△APB的周長最小;①在直線m上作出該點P;(保留畫圖痕跡)②△APB的周長的最小值為.(直接寫出結果)23.(12分)計算:.化簡:.24.在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球實驗,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統計數據:摸球的次數n10020030050080010003000摸到白球的次數m651241783024815991803摸到白球的頻率0.650.620.5930.6040.6010.5990.601(1)請估計:當n很大時,摸到白球的頻率將會接近;(精確到0.1)假如你摸一次,你摸到白球的概率P(白球)=;試估算盒子里黑、白兩種顏色的球各有多少只?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關鍵.2、C【解析】

首先求出方程的根,再利用半徑長度,由點O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,

(x+2)(x-6)=0,

解得:x1=-2(不合題意舍去),x2=6,

∵點O到直線l距離是方程x2-4x-12=0的一個根,即為6,

∴點O到直線l的距離d=6,r=5,

∴d>r,

∴直線l與圓相離.故選:C【點睛】本題考核知識點:直線與圓的位置關系.解題關鍵點:理解直線與圓的位置關系的判定方法.3、D【解析】

根據多邊形的外角和等于360°,與邊數無關即可解答.【詳解】∵多邊形的外角和等于360°,與邊數無關,∴一個多邊形的邊數由3增加到n時,其外角度數的和還是360°,保持不變.故選D.【點睛】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關鍵.4、B【解析】

直接利用平行四邊形的性質得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的長,進而得出答案.【詳解】∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周長是:1.故選B.【點睛】平行四邊形的性質掌握要熟練,找到等值代換即可求解.5、A【解析】

根據題意找到等量關系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據此列出方程組.【詳解】依題意得:.故選A.【點睛】考查了由實際問題抽象出二元一次方程組.根據實際問題中的條件列方程組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出方程組.6、C【解析】

根據反比例函數k的幾何意義,求出k的值即可解決問題【詳解】解:∵過點P作PQ⊥x軸于點Q,△OPQ的面積為2,

∴||=2,

∵k<0,

∴k=-1.

故選:C.【點睛】本題考查反比例函數k的幾何意義,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考常考題型.7、A【解析】分析:A、根據方程的系數結合根的判別式,可得出△>0,由此即可得出x1≠x2,結論A正確;B、根據根與系數的關系可得出x1+x2=a,結合a的值不確定,可得出B結論不一定正確;C、根據根與系數的關系可得出x1?x2=﹣2,結論C錯誤;D、由x1?x2=﹣2,可得出x1<0,x2>0,結論D錯誤.綜上即可得出結論.詳解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,結論A正確;B、∵x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,∴x1+x2=a,∵a的值不確定,∴B結論不一定正確;C、∵x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,∴x1?x2=﹣2,結論C錯誤;D、∵x1?x2=﹣2,∴x1<0,x2>0,結論D錯誤.故選A.點睛:本題考查了根的判別式以及根與系數的關系,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.8、D【解析】分析:根據頻率分布直方圖中的數據信息和被調查學生總數為120進行計算即可作出判斷.詳解:由頻率分布直方圖可知:一周內用于閱讀的時間在8-10小時這組的:頻率:組距=0.125,而組距為2,∴一周內用于閱讀的時間在8-10小時這組的頻率=0.125×2=0.25,又∵被調查學生總數為120人,∴一周內用于閱讀的時間在8-10小時這組的頻數=120×0.25=30.綜上所述,選項D中數據正確.故選D.點睛:本題解題的關鍵有兩點:(1)要看清,縱軸上的數據是“頻率:組距”的值,而不是頻率;(2)要弄清各自的頻數、頻率和總數之間的關系.9、C【解析】

因為中位數的值與大小排列順序有關,而此題中x的大小位置未定,故應該分類討論x所處的所有位置情況:從小到大(或從大到小)排列在中間;結尾;開始的位置.【詳解】(1)將這組數據從小到大的順序排列為2,3,4,5,x,

處于中間位置的數是4,

∴中位數是4,

平均數為(2+3+4+5+x)÷5,

∴4=(2+3+4+5+x)÷5,

解得x=6;符合排列順序;

(2)將這組數據從小到大的順序排列后2,3,4,x,5,

中位數是4,

此時平均數是(2+3+4+5+x)÷5=4,

解得x=6,不符合排列順序;

(3)將這組數據從小到大的順序排列后2,3,x,4,5,

中位數是x,

平均數(2+3+4+5+x)÷5=x,

解得x=3.5,符合排列順序;

(4)將這組數據從小到大的順序排列后2,x,3,4,5,

中位數是3,

平均數(2+3+4+5+x)÷5=3,

解得x=1,不符合排列順序;

(5)將這組數據從小到大的順序排列后x,2,3,4,5,

中位數是3,

平均數(2+3+4+5+x)÷5=3,

解得x=1,符合排列順序;

∴x的值為6、3.5或1.

故選C.【點睛】考查了確定一組數據的中位數,涉及到分類討論思想,較難,要明確中位數的值與大小排列順序有關,一些學生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數.如果數據有奇數個,則正中間的數字即為所求;如果是偶數個,則找中間兩位數的平均數.10、C【解析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數是360÷36=10,故選C.考點:多邊形的內角和外角.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】

利用平方差公式進行計算即可得.【詳解】原式==5-3=2,故答案為:2.【點睛】本題考查了二次根式的混合運算,掌握平方差公式結構特征是解本題的關鍵.12、90°【解析】

連接OE,根據圓周角定理即可求出答案.【詳解】解:連接OE,

根據圓周角定理可知:

∠C=∠AOE,∠D=∠BOE,

則∠C+∠D=(∠AOE+∠BOE)=90°,

故答案為:90°.【點睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.13、【解析】

首先由圖可得此轉盤被平分成了24等份,其中驚蟄、春分、清明區域有3份,然后利用概率公式求解即可求得答案.【詳解】∵如圖,此轉盤被平分成了24等份,其中驚蟄、春分、清明有3份,∴指針落在驚蟄、春分、清明的概率是:.故答案為【點睛】此題考查了概率公式的應用.注意概率=所求情況數與總情況數之比.14、1【解析】試題分析:首先把等式a+b=5的等號兩邊分別平方,即得a2+2ab+b2=25,然后根據題意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案為1.考點:完全平方公式.15、3.【解析】

先根據同角的余角相等證明∠ADE=∠ACD,在△ADC根據銳角三角函數表示用含有k的代數式表示出AD=4k和DC=3k,從而根據勾股定理得出AC=5k,又AC=5,從而求出DC的值即為AB.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,設AD=4k,CD=3k,則AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案為3.【點睛】本題考查矩形的性質和利用銳角三角函數解直角三角形,解決此類問題時需要將已知角的三角函數、已知邊、未知邊,轉換到同一直角三角形中,然后解決問題.16、x≠﹣5.【解析】

根據分母不為零分式有意義,可得答案.【詳解】由題意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【點睛】本題考查了分式有意義的條件,利用分母不為零分式有意義得出不等式是解題關鍵.三、解答題(共8題,共72分)17、【解析】

過點B作BD⊥AC,在△ABD中由cosA=可計算出AD的值,進而求出BD的值,再由勾股定理求出BC的值.【詳解】解:過點B作BD⊥AC,垂足為點D,在Rt△ABD中,,∵,AB=5,∴AD=AB·cosA=5×=3,∴BD=4,∵AC=5,∴DC=2,∴BC=.【點睛】本題考查了銳角的三角函數和勾股定理的運用.18、(1)y=;(2).【解析】

(1)根據題意得出,解方程即可求得m、n的值,然后根據待定系數法即可求得反比例函數的解析式;(2)設OG=x,則GD=OG=x,CG=2﹣x,根據勾股定理得出關于x的方程,解方程即可求得DG的長,過F點作FH⊥CB于H,易證得△GCD∽△DHF,根據相似三角形的性質求得FG,最后根據勾股定理即可求得.【詳解】(1)∵D(m,2),E(n,),∴AB=BD=2,∴m=n﹣2,∴,解得,∴D(1,2),∴k=2,∴反比例函數的表達式為y=;(2)設OG=x,則GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=,過F點作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴,即,∴FD=,∴FG=.【點睛】本題考查了反比例函數與幾何綜合題,涉及了待定系數法、勾股定理、相似三角形的判定與性質等,熟練掌握待定系數法、相似三角形的判定與性質是解題的關鍵.19、見解析.【解析】

根據角平分線的性質、線段的垂直平分線的性質即可解決問題.【詳解】∵點P在∠ABC的平分線上,∴點P到∠ABC兩邊的距離相等(角平分線上的點到角的兩邊距離相等),∵點P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點到線段的兩個端點的距離相等),如圖所示:【點睛】本題考查作圖﹣復雜作圖、角平分線的性質、線段的垂直平分線的性質等知識,解題的關鍵是靈活運用所學知識解決問題.20、見解析【解析】

根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得解集.在數軸上表示出來即可.【詳解】解:去分母,得3x+1-6>4x-2,移項,得:3x-4x>-2+5,合并同類項,得-x>3,系數化為1,得x<-3,不等式的解集在數軸上表示如下:【點睛】此題考查解一元一次不等式,在數軸上表示不等式的解集,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論