2025年遼寧省凌源市第二高級中學高三模擬數學試題含解析_第1頁
2025年遼寧省凌源市第二高級中學高三模擬數學試題含解析_第2頁
2025年遼寧省凌源市第二高級中學高三模擬數學試題含解析_第3頁
2025年遼寧省凌源市第二高級中學高三模擬數學試題含解析_第4頁
2025年遼寧省凌源市第二高級中學高三模擬數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年遼寧省凌源市第二高級中學高三模擬數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.以,為直徑的圓的方程是A. B.C. D.2.在函數:①;②;③;④中,最小正周期為的所有函數為()A.①②③ B.①③④ C.②④ D.①③3.在等差數列中,,,若(),則數列的最大值是()A. B.C.1 D.34.已知,則()A. B. C. D.5.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.6.已知集合,,則集合的真子集的個數是()A.8 B.7 C.4 D.37.若與互為共軛復數,則()A.0 B.3 C.-1 D.48.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.9.設復數滿足,在復平面內對應的點為,則不可能為()A. B. C. D.10.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.111.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.12.設,均為非零的平面向量,則“存在負數,使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.平面向量,,(R),且與的夾角等于與的夾角,則.14.已知為橢圓內一定點,經過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.15.的三個內角A,B,C所對應的邊分別為a,b,c,已知,則________.16.已知數列為等差數列,數列為等比數列,滿足,其中,,則的值為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.18.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.19.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設,過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.20.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.21.(12分)已知函數.(1)求不等式的解集;(2)若函數的定義域為,求實數的取值范圍.22.(10分)(選修4-4:坐標系與參數方程)在平面直角坐標系,已知曲線(為參數),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

設圓的標準方程,利用待定系數法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.本題考查待定系數法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.2.A【解析】逐一考查所給的函數:,該函數為偶函數,周期;將函數圖象x軸下方的圖象向上翻折即可得到的圖象,該函數的周期為;函數的最小正周期為;函數的最小正周期為;綜上可得最小正周期為的所有函數為①②③.本題選擇A選項.點睛:求三角函數式的最小正周期時,要盡可能地化為只含一個三角函數的式子,否則很容易出現錯誤.一般地,經過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.3.D【解析】

在等差數列中,利用已知可求得通項公式,進而,借助函數的的單調性可知,當時,取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數,在時,單調遞減,且;在時,單調遞減,且.所以數列的最大值是,且,所以數列的最大值是3.故選:D.本題考查等差數列的通項公式,考查數列與函數的關系,借助函數單調性研究數列最值問題,難度較易.4.C【解析】

利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.本題考查誘導公式、倍角公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數的符號.5.D【解析】

根據已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.本題主要考查的是雙曲線的簡單幾何性質和向量的坐標運算,離心率問題關鍵尋求關于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.6.D【解析】

轉化條件得,利用元素個數為n的集合真子集個數為個即可得解.【詳解】由題意得,,集合的真子集的個數為個.故選:D.本題考查了集合的化簡和運算,考查了集合真子集個數問題,屬于基礎題.7.C【解析】

計算,由共軛復數的概念解得即可.【詳解】,又由共軛復數概念得:,.故選:C本題主要考查了復數的運算,共軛復數的概念.8.C【解析】

畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關鍵.9.D【解析】

依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經驗證不滿足,故選:D.本題主要考查了復數的概念、復數的幾何意義,還考查了推理論證能力,屬于基礎題.10.B【解析】

過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.本小題主要考查向量數量積的計算,考查圓的方程,屬于基礎題.11.B【解析】

連接、,即可得到,,再根據平面向量的數量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B本題考查平面向量的數量積及其運算律的應用,屬于基礎題.12.B【解析】

根據充分條件、必要條件的定義進行分析、判斷后可得結論.【詳解】因為,均為非零的平面向量,存在負數,使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當向量,的夾角為鈍角時,滿足,但此時,不共線且反向,所以必要性不成立.所以“存在負數,使得”是“”的充分不必要條件.故選B.判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時注意選擇恰當的方法判斷命題是否正確.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角14.【解析】

設弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【詳解】設弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設而不求法來解答,考查計算能力,屬于中等題.15.【解析】

利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎題.16.【解析】

根據題意,判斷出,根據等比數列的性質可得,再令數列中的,,,根據等差數列的性質,列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數列中的,,,根據等差數列的性質,可得,所以.②根據①②得出,.所以.故答案為.本題主要考查等差數列、等比數列的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】

(1)根據面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點,由等腰三角形性質可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據向量法求出二面角的余弦值.【詳解】(1)如圖,設與相交于點,連接,又為菱形,故,為的中點.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,,兩兩垂直.如圖以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.不妨設,則,,則,,,,,,設為平面的法向量,則即可取,設為平面的法向量,則即可取,所以.所以二面角的余弦值為0.本題主要考查線面垂直的判定定理,面面垂直的判定定理的應用,以及利用向量法求二面角,意在考查學生的直觀想象能力,邏輯推理能力和數學運算能力,屬于基礎題.18.(1)證明見解析(2)證明見解析【解析】

(1)先根據絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.本題考查絕對值不等式、應用基本不等式證明不等式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和推理論證能力.19.(1)(2)【解析】

(1)由已知條件列出關于和的方程,并計算出和的值,jike得到橢圓的方程.(2)設出點和點坐標,運用點坐標計算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設,.當直線垂直于軸時,,且此時,,當直線不垂直于軸時,設直線由,得.,.要使恒成立,只需,即最小值為本題考查了求解橢圓方程以及直線與橢圓的位置關系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運用根與系數的關系轉化為只含一個變量的表達式進行求解,需要掌握解題方法,并且有一定的計算量.20.(1)的極坐標方程為,的直角坐標方程為(2)【解析】

(1)先把曲線的參數方程消參后,轉化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.本題考查極坐標方程與直角坐標方程、參數方程與普通方程的轉化、極坐標的幾何意義,還考查推理論證能力以及數形結合思想,屬于中檔題.21.(1)(2)【解析】

(1)分類討論,去掉絕對值,化為與之等價的三個不等式組,求得每個不等式組的解集,再取并集即可.(2)要使函數的定義域為R,只要的最小值大于0即可,根據絕對值不等式的性質求得最小值即可得到答案.【詳解】(1)不等式或或,解得或,即x>0,所以原不等式的解集為.(2)要使函數的定義域為R,只要的最小值大于0即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論