




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省江陰市第一初級中學2024屆中考數學對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在中,分別在邊邊上,已知,則的值為()A. B. C. D.2.若關于的方程的兩根互為倒數,則的值為()A. B.1 C.-1 D.03.已知圓錐的側面積為10πcm2,側面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm4.為了解某校初三學生的體重情況,從中隨機抽取了80名初三學生的體重進行統計分析,在此問題中,樣本是指()A.80 B.被抽取的80名初三學生C.被抽取的80名初三學生的體重 D.該校初三學生的體重5.如圖,是的外接圓,已知,則的大小為A. B. C. D.6.下列函數是二次函數的是()A. B. C. D.7.一組數據8,3,8,6,7,8,7的眾數和中位數分別是()A.8,6B.7,6C.7,8D.8,78.下列算式中,結果等于x6的是()A.x2?x2?x2B.x2+x2+x2C.x2?x3D.x4+x29.如圖圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.10.-10-4的結果是()A.-7B.7C.-14D.13二、填空題(本大題共6個小題,每小題3分,共18分)11.一次函數與的圖象如圖,則的解集是__.12.因式分解:=13.王英同學從A地沿北偏西60°方向走100米到B地,再從B地向正南方向走200米到C地,此時王英同學離A地的距離是_____米.14.化簡的結果等于__.15.已知拋物線y=,那么拋物線在y軸右側部分是_________(填“上升的”或“下降的”).16.如圖是一位同學設計的用手電筒來測量某古城墻高度的示意圖.點P處放一水平的平面鏡,光線從點A出發經平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=15米,那么該古城墻的高度CD是_____米.三、解答題(共8題,共72分)17.(8分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?18.(8分)為了了解某校學生對以下四個電視節目:A《最強大腦》,B《中國詩詞大會》,C《朗讀者》,D《出彩中國人》的喜愛情況,隨機抽取了部分學生進行調查,要求每名學生選出并且只能選出一個自己最喜愛的節目,根據調查結果,繪制了如下兩幅不完整的統計圖.請你根據圖中所提供的信息,完成下列問題:本次調查的學生人數為________;在扇形統計圖中,A部分所占圓心角的度數為________;請將條形統計圖補充完整:若該校共有3000名學生,估計該校最喜愛《中國詩詞大會》的學生有多少名?19.(8分)小馬虎做一道數學題,“已知兩個多項式,,試求.”其中多項式的二次項系數印刷不清楚.小馬虎看答案以后知道,請你替小馬虎求出系數“”;在(1)的基礎上,小馬虎已經將多項式正確求出,老師又給出了一個多項式,要求小馬虎求出的結果.小馬虎在求解時,誤把“”看成“”,結果求出的答案為.請你替小馬虎求出“”的正確答案.20.(8分)如圖,在平面直角坐標系xOy中,函數的圖象與直線y=2x+1交于點A(1,m).(1)求k、m的值;(2)已知點P(n,0)(n≥1),過點P作平行于y軸的直線,交直線y=2x+1于點B,交函數的圖象于點C.橫、縱坐標都是整數的點叫做整點.①當n=3時,求線段AB上的整點個數;②若的圖象在點A、C之間的部分與線段AB、BC所圍成的區域內(包括邊界)恰有5個整點,直接寫出n的取值范圍.21.(8分)如圖,在△ABC中,點D,E分別在邊AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于點F.(1)求證:;(2)請探究線段DE,CE的數量關系,并說明理由;(3)若CD⊥AB,AD=2,BD=3,求線段EF的長.22.(10分)某學校“智慧方園”數學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經過社團成員討論發現,過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.23.(12分)計算:﹣|﹣2|+()﹣1﹣2cos45°24.如圖,△ABC是⊙O的內接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當為何值時,AB?AC的值最大?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據DE∥BC得到△ADE∽△ABC,根據相似三角形的性質解答.【詳解】解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故選:B.【點睛】本題考查了相似三角形的判定和性質,掌握相似三角形的對應邊的比等于相似比是解題的關鍵.2、C【解析】
根據已知和根與系數的關系得出k2=1,求出k的值,再根據原方程有兩個實數根,即可求出符合題意的k的值.【詳解】解:設、是的兩根,由題意得:,由根與系數的關系得:,∴k2=1,解得k=1或?1,∵方程有兩個實數根,則,當k=1時,,∴k=1不合題意,故舍去,當k=?1時,,符合題意,∴k=?1,故答案為:?1.【點睛】本題考查的是一元二次方程根與系數的關系及相反數的定義,熟知根與系數的關系是解答此題的關鍵.3、C【解析】
圓錐的側面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設母線長為R,則圓錐的側面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關鍵.4、C【解析】
總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數目.我們在區分總體、個體、樣本、樣本容量,這四個概念時,首先找出考查的對象.從而找出總體、個體.再根據被收集數據的這一部分對象找出樣本,最后再根據樣本確定出樣本容量.【詳解】樣本是被抽取的80名初三學生的體重,
故選C.【點睛】此題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大小.樣本容量是樣本中包含的個體的數目,不能帶單位.5、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.6、C【解析】
根據一次函數的定義,二次函數的定義對各選項分析判斷利用排除法求解.【詳解】A.y=x是一次函數,故本選項錯誤;B.y=是反比例函數,故本選項錯誤;C.y=x-2+x2是二次函數,故本選項正確;D.y=右邊不是整式,不是二次函數,故本選項錯誤.故答案選C.【點睛】本題考查的知識點是二次函數的定義,解題的關鍵是熟練的掌握二次函數的定義.7、D【解析】試題分析:根據中位數和眾數的定義分別進行解答即可.把這組數據從小到大排列:3,6,7,7,8,8,8,8出現了3次,出現的次數最多,則眾數是8;最中間的數是7,則這組數據的中位數是7考點:(1)眾數;(2)中位數.8、A【解析】試題解析:A、x2?x2?x2=x6,故選項A符合題意;
B、x2+x2+x2=3x2,故選項B不符合題意;
C、x2?x3=x5,故選項C不符合題意;
D、x4+x2,無法計算,故選項D不符合題意.
故選A.9、A【解析】A.是軸對稱圖形,是中心對稱圖形,故本選項正確;B.是中心對稱圖,不是軸對稱圖形,故本選項錯誤;C.不是中心對稱圖,是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤。故選A.10、C【解析】解:-10-4=-1.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
不等式kx+b-(x+a)>0的解集是一次函數y1=kx+b在y2=x+a的圖象上方的部分對應的x的取值范圍,據此即可解答.【詳解】解:不等式的解集是.故答案為:.【點睛】本題考查了一次函數的圖象與一元一次不等式的關系:從函數的角度看,就是尋求使一次函數y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.12、﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案為:﹣3(x﹣y)1.點睛:本題考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式進行二次分解,注意分解要徹底.13、100【解析】先在直角△ABE中利用三角函數求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.解:如圖,作AE⊥BC于點E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=1.在Rt△ACE中,根據勾股定理得:AC=100.即此時王英同學離A地的距離是100米.故答案為100.解一般三角形的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.14、.【解析】
先通分變為同分母分式,然后根據分式的減法法則計算即可.【詳解】解:原式.故答案為:.【點睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關鍵.15、上升的【解析】
∵拋物線y=x2-1開口向上,對稱軸為x=0(y軸),
∴在y軸右側部分拋物線呈上升趨勢.故答案為:上升的.【點睛】本題考查的知識點是二次函數的性質,解題的關鍵是熟練的掌握二次函數的性質.16、10【解析】
首先證明△ABP∽△CDP,可得=,再代入相應數據可得答案.【詳解】如圖,由題意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案為10.【點睛】本題考查了相似三角形的應用,解題的關鍵是熟練的掌握相似三角形的應用.三、解答題(共8題,共72分)17、20千米【解析】
由勾股定理兩直角邊的平方和等于斜邊的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜邊相等兩次利用勾股定理得到AD2+AE2=BE2+BC2,設AE為x,則BE=10﹣x,將DA=8,CB=2代入關系式即可求得.【詳解】解:設基地E應建在離A站x千米的地方.則BE=(50﹣x)千米在Rt△ADE中,根據勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根據勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D兩村到E點的距離相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E應建在離A站20千米的地方.考點:勾股定理的應用.18、(1)120;(2)
;(3)答案見解析;(4)1650.【解析】
(1)依據節目B的數據,即可得到調查的學生人數;(2)依據A部分的百分比,即可得到A部分所占圓心角的度數;(3)求得C部分的人數,即可將條形統計圖補充完整;(4)依據喜愛《中國詩詞大會》的學生所占的百分比,即可得到該校最喜愛《中國詩詞大會》的學生數量.【詳解】,故答案為120;,故答案為;:,如圖所示:,答:該校最喜愛中國詩詞大會的學生有1650名.【點睛】本題考查了條形統計圖、扇形統計圖、用樣本估計總體,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合思想解答.19、(1)-3;(2)“A-C”的正確答案為-7x2-2x+2.【解析】
(1)根據整式加減法則可求出二次項系數;(2)表示出多項式,然后根據的結果求出多項式,計算即可求出答案.【詳解】(1)由題意得,,A+2B=(4+)+2-8,4+=1,=-3,即系數為-3.(2)A+C=,且A=,C=4,AC=【點睛】本題主要考查了多項式加減運算,熟練掌握運算法則是解題關鍵.20、(1)m=3,k=3;(2)①線段AB上有(1,3)、(2,5)、(3,7)共3個整點,②當2≤n<3時,有五個整點.【解析】
(1)將A點代入直線解析式可求m,再代入,可求k.(2)①根據題意先求B,C兩點,可得線段AB上的整點的橫坐標的范圍1≤x≤3,且x為整數,所以x取1,2,3.再代入可求整點,即求出整點個數.②根據圖象可以直接判斷2≤n<3.【詳解】(1)∵點A(1,m)在y=2x+1上,∴m=2×1+1=3.∴A(1,3).∵點A(1,3)在函數的圖象上,∴k=3.(2)①當n=3時,B、C兩點的坐標為B(3,7)、C(3,1).∵整點在線段AB上∴1≤x≤3且x為整數∴x=1,2,3∴當x=1時,y=3,當x=2時,y=5,當x=3時,y=7,∴線段AB上有(1,3)、(2,5)、(3,7)共3個整點.②由圖象可得當2≤n<3時,有五個整點.【點睛】本題考查反比例函數和一次函數的交點問題,待定系數法,以及函數圖象的性質.關鍵是能利用函數圖象有關解決問題.21、(1)證明見解析;(2)DE=CE,理由見解析;(3).【解析】試題分析:(1)證明△ABE∽△ACD,從而得出結論;(2)先證明∠CDE=∠ACD,從而得出結論;(3)解直角三角形示得.試題解析:(1)∵∠ABE
=∠ACD,∠A=∠A,∴△ABE∽△ACD,∴;(2)∵,∴,又∵∠A=∠A,∴△ADE∽△ACB,∴∠AED
=∠ABC,∵∠AED
=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,∴∠ACD+∠CDE=∠ABE+∠CBE,∵∠ABE
=∠ACD,∴∠CDE=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CDE=∠ABE=∠ACD,∴DE=CE;(3)∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=∠CDE+∠ADE=90°,∵∠ABE
=∠ACD,∠CDE=∠ACD,∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,∴AE=DE,BE⊥AC,∵DE=CE,∴AE=DE=CE,∴AB=BC,∵AD=2,BD=3,∴BC=AB=AD+BD=5,在Rt△BDC中,,在Rt△ADC中,,∴,∵∠ADC=∠FEC=90°,∴,∴.22、(1)75;4;(2)CD=4.【解析】
(1)根據平行線的性質可得出∠ADB=∠OAC=75°,結合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質可求出OD的值,進而可得出AD的值,由三角形內角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【點睛】本題考查了相似三角形的性質、等腰三角形的判定與性質、勾股定理以及平行線的性質,解題的關鍵是:(1)利用相似三角形的性質求出OD的值;(2)利用勾股定理求出BE、CD的長度.23、+1【解析】分析:直接利用二次根式的性質、負指數冪的性質和特殊角的三角函數值分別化簡求出答案.詳解:原式=2﹣2+3﹣2×=2+1﹣=+1.點睛:本題主要考查了實數運算,正確化簡各數是解題的關鍵.24、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫療設施建設項目委托代建合同
- 環保物品采購合同范本
- 合伙企業退伙合同范本
- 租售養殖基地合同范本
- 企業推廣策略
- 鋁單板幕墻合同范本
- 育苗基地合作合同范本
- 中考古文整合復習主題八為人處世類
- 房屋親屬贈與合同范本
- 廠家木屋出售合同范本
- 房地產行業未來走勢與機遇分析
- 2025年中國色度儀行業發展運行現狀及投資策略研究報告
- 2025年淄博市光明電力服務有限責任公司招聘筆試參考題庫含答案解析
- 河北省部分重點中學2024-2025學年高三下學期3月聯合測評(T8聯考)化學試題(含答案)
- 住宅老舊電梯更新改造工作指南匯報- 中國電梯協會
- 7.2做中華人文精神的弘揚者 教學設計-2024-2025學年統編版道德與法治七年級下冊
- 《三氣周瑜》兒童故事繪本ppt課件(圖文演講)
- 血液透析血標本采集
- 高速公路半填半挖及填挖交界路基施工工法
- 中國銀行業信息科技十三五發展規劃監管指導意見
- 滬教版牛津版四年級下冊英語全冊教案及教學設計
評論
0/150
提交評論