金風科技風資源技術(shù)專家楊長鋒:測風數(shù)據(jù)長期訂正對風資源評估的影響_第1頁
金風科技風資源技術(shù)專家楊長鋒:測風數(shù)據(jù)長期訂正對風資源評估的影響_第2頁
金風科技風資源技術(shù)專家楊長鋒:測風數(shù)據(jù)長期訂正對風資源評估的影響_第3頁
金風科技風資源技術(shù)專家楊長鋒:測風數(shù)據(jù)長期訂正對風資源評估的影響_第4頁
金風科技風資源技術(shù)專家楊長鋒:測風數(shù)據(jù)長期訂正對風資源評估的影響_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1?GOLDWINDSCIENCE&TECHNOLOGYCO.,LTD.測風數(shù)據(jù)長期訂正對風資源評估的影響Theimpactoflong-termcorrectionofwindmeasurementdataonwindresourceassessment北京金風科創(chuàng)風電設(shè)備有限公司BEIJINGGOLDWINDSCIENCE&CREATIONWINDPOWEREQUIPMENTCO.,LTD風資源技術(shù)部WindResourceAssessmentDepartment高級風資源工程師:楊長鋒SeniorWindResourceEngineer:ChangfengYang長期訂正的作用及意義Thefunction

andsignificanceoflong-termrevision01算法匯總Algorithmsummary02結(jié)果驗證Results03結(jié)論及相關(guān)進展Conclusion&Relatedprogress04CONTENTS目錄3長期訂正的作用及意義Thefunctionandsignificanceoflong-termrevision數(shù)據(jù)清理參數(shù)計算風速風頻分布極端風速入流角湍流切變水平外推垂直外推降低LCOE計算的不確定度,為項目評估提供支持提高載荷輸入?yún)?shù)準確性算法匯總AlgorithmsummaryAlgorithmTypeAbbrev.DescriptionLinearLeastSquaresLLSTheclassicleastsquaresfittothescatterplotoftargetandreferencespeedsTotalLeastSquaresTLSAslightmodificationofLLSthatminimizesorthogonaldistancetothebestfitVerticalSliceVSApiecewiselinearfittotthescatterplotoftargetandreferencespeedsVarianceRatioVRAsimplelinearmappingthataimstopreservethevarianceofthetargetdataBulkSpeedRatioBSRThesimplestpossiblealgorithm,basedontheratioofmeanwindspeedsWeibullFitWBLApowerlawfitwhoseparametersderivefromtheWeibullparametersofthetargetandreferencedataSpeedSortSSAlinearfittotherelationshipbetweentargetandreferencecumulativefrequencydistributionsMatrixTimeSeriesMTSAnimplementationoftheclassicmatrixmethodthatwemodifiedtoproducerealistictimeseriesdata整體最小二乘TotalLeastSquaresAlgorithm線性最小二乘LinearLeastSquaresAlgorithm分風速段線性回歸VerticalSliceAlgorithm方差比值法VarianceRatioAlgorithm風頻擬合法WeibullFitAlgorithm速度追蹤法SpeedSortAlgorithm風速序列聯(lián)合概率分布MartixTimeSeriesAlgorithmCASE1CASE2CASE3CASE4Duration6years6years3years3yearsR^20.6440.5750.6210.598RecoveryRate99.29%99.93%99.69%99.54%Timestepsofcomparison60min60min60min60mintimes212199評價指標WSKWPDAEPSD√?☆★RMSE√?☆★計算結(jié)果及驗證思路Ideasforverifyingcalculationresults1month3month6month9month12month15monthBSR

0.2124

0.1319

0.0672

0.0442

0.0319

0.0292MTS

0.2067

0.1362

0.1105

0.0686

0.0243

0.0404SS

0.1965

0.1214

0.0590

0.0461

0.0330

0.0323TLS

0.2047

0.1239

0.0602

0.0496

0.0350

0.0332VR

0.2128

0.1311

0.0685

0.0502

0.0347

0.0340WBL

0.2265

0.1386

0.0716

0.0493

0.0342

0.0349LLS

0.1833

0.1073

0.0701

0.0463

0.0377

0.0317時間長度對計算結(jié)果的影響Theeffectoflengthofdataonthecalculationresults結(jié)果驗證-風速Result–WindSpeedMast1Mast2Mast3Mast4BSR0.05720.06050.03250.0406LLS0.04850.05610.02580.0361MTS0.05470.06510.03320.0471SS0.05460.06950.03340.0424TLS0.05960.06790.02910.0426VR0.05870.06960.02870.0430VS0.04450.05150.02500.0367WBL0.06110.06710.02750.0429New0.04590.05250.02390.0327結(jié)果驗證-K值Result–KvalueMast1Mast2Mast3Mast4BSR0.06900.21550.08990.0783LLS0.53200.58290.45980.4321MTS0.22140.20340.20350.1821SS0.11250.08470.11370.0681TLS0.12130.10240.11200.0980VR0.11350.07710.10590.0817VS0.62020.60130.49020.4373WBL0.10580.07830.10150.0741New0.06100.05790.06780.0383結(jié)果驗證-風功率密度Result–WindPowerDensityMast1Mast2Mast3Mast4BSR7.934317.397314.76118.3066LLS38.670835.319033.557631.0287MTS18.912116.255417.735715.2753SS8.50776.90768.38656.9202TLS8.48539.23768.98768.4063VR8.09767.36147.76037.1570VS42.350635.116835.485530.6848WBL8.15046.21838.55056.7247New7.56876.12577.04754.2817結(jié)果驗證-發(fā)電量Result–AnnualEnergyProductionMast1Mast2Mast3Mast4BSR152467.2145961.380031.43154478.9LLS105321.1372920.395588.4894103.6MTS126250.5245128.956274.3136752.6SS139641107285.556274.3136752.6TLS140613.8100627.778606.19143524.6VR139840.9108498.678719.25150406.5VS214058492175.366243.53188772.1WBL150526111711.556960.36150968.8New92524.47107033.546819.97104563.3季節(jié)因素對長期訂正的影響十分重要,隨測風時間增加,風速訂正不確定度會明顯降低。Theinfluenceofseasonalfactorsonlong-termcorrectionis

important.Asthewindmeasurementtimeincreases,thewindspeedcorrectionuncertaintywillbesignificantlyreduced.在進行長期訂正時,不僅要注意風速的變化值,同時要注意K值的變化幅度,避免造成風功率密度產(chǎn)生較大差異。Inthelong-termcorrection,toavoidalargedifferenceinthecalculationofthewindpowerdensity.PayattentiontothevariationoftheKvaluewhilepayingattentiontothechangevalueofthewindspeed.結(jié)論Conclusion線性回歸方法在風速訂正上與其他方法差異不大,但會較大幅度改變K值,對發(fā)電量計算產(chǎn)生較大影響。尤其是實測風速K值較小時,誤差會更加明顯。Thelinearregressionmethodhaslittledifferencewithothermethodsinwindspeedcorrection,butitwillchangetheKvaluegreatly,whichhasagreatimpactonthecalculationofpowergeneration.EspeciallywhenthemeasuredwindspeedKvalueissmall,theerrorwillbemoreobvious.優(yōu)化后的算法與其他MCP算法相比,在風速、K值和發(fā)電量計算上誤差較小且表現(xiàn)較為穩(wěn)定。ComparedwithotherMCPalgorithms,theoptimizedalgorithmhaslesserrorinwindspeed,Kvalueandpowergenerationcalculati

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論