




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省長葛市第三實驗高中2022-2023學年高三適應性考試(一)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.2.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.3.函數的單調遞增區間是()A. B. C. D.4.已知向量,,若,則()A. B. C. D.5.某校團委對“學生性別與中學生追星是否有關”作了一次調查,利用列聯表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結論是()A.有99%以上的把握認為“學生性別與中學生追星無關”B.有99%以上的把握認為“學生性別與中學生追星有關”C.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星無關”D.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星有關”6.若不等式對恒成立,則實數的取值范圍是()A. B. C. D.7.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.48.函數f(x)=2x-3A.[32C.[329.在等差數列中,若,則()A.8 B.12 C.14 D.1010.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立11.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果,哥德巴赫猜想的內容是:每個大于2的偶數都可以表示為兩個素數的和,例如:,,,那么在不超過18的素數中隨機選取兩個不同的數,其和等于16的概率為()A. B. C. D.12.已知函數滿足,且,則不等式的解集為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為等比數列的前項和,若,且,,成等差數列,則.14.若,則=______,=______.15.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.16.(x+y)(2x-y)5的展開式中x3y3的系數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,為的導數,函數在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.18.(12分)已知△ABC三內角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.19.(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.20.(12分)設點,動圓經過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.21.(12分)已知f(x)=|x+3|-|x-2|(1)求函數f(x)的最大值m;(2)正數a,b,c滿足a+2b+3c=m,求證:22.(10分)已知向量,函數.(1)求函數的最小正周期及單調遞增區間;(2)在中,三內角的對邊分別為,已知函數的圖像經過點,成等差數列,且,求a的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.2.A【解析】
由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質,屬于基礎題.3.D【解析】
利用輔助角公式,化簡函數的解析式,再根據正弦函數的單調性,并采用整體法,可得結果.【詳解】因為,由,解得,即函數的增區間為,所以當時,增區間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數的單調遞增區間,重點在于把握正弦函數的單調性,同時對于整體法的應用,使問題化繁為簡,難度較易.4.A【解析】
利用平面向量平行的坐標條件得到參數x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.5.B【解析】
通過與表中的數據6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認為“學生性別與中學生追星有關”,故選B.【點睛】本題考查了獨立性檢驗的應用問題,屬于基礎題.6.B【解析】
轉化為,構造函數,利用導數研究單調性,求函數最值,即得解.【詳解】由,可知.設,則,所以函數在上單調遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數在恒成立問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.7.A【解析】
根據題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.8.A【解析】
根據冪函數的定義域與分母不為零列不等式組求解即可.【詳解】因為函數y=2x-3解得x≥32且∴函數f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數fx的定義域為a,b,則函數fgx9.C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數列的基本量的求解,難度較易.已知等差數列的任意兩項的值,可通過構建和的方程組求通項公式.10.D【解析】
取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.11.B【解析】
先求出從不超過18的素數中隨機選取兩個不同的數的所有可能結果,然后再求出其和等于16的結果,根據等可能事件的概率公式可求.【詳解】解:不超過18的素數有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數共有,其和等于16的結果,共2種等可能的結果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發生事件的個數,本題不可以列舉出所有事件但可以用分步計數得到,屬于基礎題.12.B【解析】
構造函數,利用導數研究函數的單調性,即可得到結論.【詳解】設,則函數的導數,,,即函數為減函數,,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數研究函數單調性,根據函數的單調性解不等式,考查學生分析問題解決問題的能力,是難題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】試題分析:∵,,成等差數列,∴,又∵等比數列,∴.考點:等差數列與等比數列的性質.【名師點睛】本題主要考查等差與等比數列的性質,屬于容易題,在解題過程中,需要建立關于等比數列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.14.10【解析】
①根據換底公式計算即可得解;②根據同底對數加法法則,結合①的結果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點睛】此題考查對數的基本運算,涉及換底公式和同底對數加法運算,屬于基礎題目.15.【解析】
求出橢圓與雙曲線的離心率,根據離心率之積的關系,然后推出關系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點睛】本題考查了橢圓、雙曲線的幾何性質,掌握橢圓、雙曲線的離心率公式,屬于基礎題.16.40【解析】
先求出的展開式的通項,再求出即得解.【詳解】設的展開式的通項為,令r=3,則,令r=2,則,所以展開式中含x3y3的項為.所以x3y3的系數為40.故答案為:40【點睛】本題主要考查二項式定理求指定項的系數,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2).【解析】
(1)對求導,令,求導研究單調性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當時,轉化利用均值不等式即得證;當,有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數,因為,,所以,存在使得,即.所以,當時,為減函數,當時,為增函數,故當時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當,即時,為的增函數,所以,,由(1)中,得,即.故滿足題意.②當,即時,有兩個不同的零點,,且,即,若時,為減函數,(*)若時,為增函數,所以的最小值為.注意到時,,且此時,(ⅰ)當時,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當時,,所以,所以由(*)知時,為減函數,所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點睛】本題考查了函數與導數綜合,考查了利用導數研究函數的最值和不等式的恒成立問題,考查了學生綜合分析,轉化劃歸,分類討論,數學運算能力,屬于較難題.18.(1);(2)或.【解析】
(1)利用正弦定理對已知代數式化簡,根據余弦定理求解余弦值;(2)根據余弦定理求出b=1或b=3,結合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點睛】此題考查利用正余弦定理求解三角形,關鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據面積公式求解面積.19.(1)(2).【解析】
(1)利用離心率和橢圓經過的點建立方程組,求解即可.(2)把面積之比轉化為縱坐標之間的關系,聯立方程結合韋達定理可求.【詳解】解:(1)設焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.【點睛】本題主要考查橢圓方程的求解及橢圓中的面積問題,橢圓方程一般利用待定系數法,建立方程組進行求解,面積問題的合理轉化是求解的關鍵,側重考查數學運算的核心素養.20.(1);(2)見解析.【解析】
(1)已知點軌跡是以為焦點,直線為準線的拋物線,由此可得曲線的方程;(2)設直線方程為,,則,設,由直線方程與拋物線方程聯立消元應用韋達定理得,,由,,用橫坐標表示出,然后計算,并代入,可得結論.【詳解】(1)設動圓圓心,由拋物線定義知:點軌跡是以為焦點,直線為準線的拋物線,設其方程為,則,解得.∴曲線的方程為;(2)證明:設直線方程為,,則,設,由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設而不求的思想方法,即設交點坐標,設直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應用韋達定理得,,代入題中其他條件所求式子中化簡變形.21.(1)(2)見解析【解析】
(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年03月四川自貢市沿灘區社會治安綜合治理中心公開招聘聘用制人員4人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 高溫氣冷堆及配套產品項目風險分析和評估報告
- 浙江省嘉興市2025屆高三下學期4月教學測試政治+答案
- 民辦四川天一學院《酒店信息化管理》2023-2024學年第二學期期末試卷
- LCR測量儀項目風險分析和評估報告
- 華東交通大學《劇本創作》2023-2024學年第二學期期末試卷
- 漳州理工職業學院《中醫養生與食療》2023-2024學年第二學期期末試卷
- 廣東海洋大學《形體訓練(Ⅱ)》2023-2024學年第一學期期末試卷
- 湖南都市職業學院《專業方向綜合課程設計》2023-2024學年第二學期期末試卷
- 江西水利職業學院《中國古代小說導讀》2023-2024學年第二學期期末試卷
- 發證機關所在地區代碼表
- 奧托尼克斯計米器使用說明書
- 風生水起博主的投資周記
- 供水管網施工組織設計
- 最全的冷軋知識材質牌號分類及生產工藝
- 易制毒、易制爆化學品安全培訓
- 氣化風機檢修工藝規程
- 美女金喜善寫真集
- 大學物理平面電磁波ppt課件
- 八年級下寫字課
- 前列腺癌臨床路徑(最全版)
評論
0/150
提交評論