




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
6.2.3向量的數乘運算第6章
平面向量1.向量加法三角形法則:特點:首尾相連,連首尾2.向量加法平行四邊形法則:特點:共始點,對角線3.向量減法三角形法則:AOB特點:同始點,連終點,指向被減復習第一個欄第十個欄OA導入
POCABQMN
導入
探究新知
探究新知
D
例題鞏固思考3:數的乘法滿足交換律、結合律和分配律,向量的數乘運算
是否也滿足上述運算律呢?
深入研究思考3:數的乘法滿足交換律、結合律和分配律,向量的數乘運算
是否也滿足上述運算律呢?
深入研究
4、向量的線性運算:向量的加、減、數乘運算統稱為向量的線性運算。向量線性運算的結果仍是向量。
探究新知
注:由此,我們發現向量與實數之間可以象多項式一樣進行運算.例題鞏固
練習鞏固
ABCDM
例題鞏固
D例題鞏固
例題鞏固
例題鞏固
ab
例題鞏固、5、用已知向量表示其他向量的兩種方法(1)直接法.(2)方程法.當直接表示比較困難時,可以首先利用三角形法則和平行四邊形法則建立關于所求向量和已知向量的等量關系,然后解關于所求向量的方程.方法總結思考4:引入向量數乘運算后,你能發現實數與向量的積與原向量
之間的位置關系嗎?易得,實數與向量的積與原向量共線
深入探究
深入探究
A,B,D三點共線思路探究
例題鞏固
思路探究A,B,P三點共線
觀察x+y的值
例題鞏固
例題鞏固
∴λ=2,k=-8.
∴2e1+ke2=λe1-4λe2.
例題鞏固
變式3試利用本例(2)中的結論判斷下列三點是否共線.
∵-2+3=1,∴P,A,B三點共線;
例題鞏固
6.證明或判斷三點共線的方法
方法總結
練習
練習
練習
練習當堂檢測練習練習練習一個定理三條運算律一個定義小結小結向量共線定理定理內容三點共線應用求相關參數的值
小結
人的一生,會有很多次遇見,而遇見是一切美好的開始,就像實數與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CHC 115.1-2021 T/CAS 115.1-2021保健紡織品第1部分:通用要求
- T/CGCC 17-2018商業信譽評價體系
- T/CECS 10181-2022消防排煙通風天窗
- T/CCSAS 026-2023化工企業操作規程管理規范
- T/CCS 027-2023煤礦地理信息系統地圖服務接口要求
- T/CCOA 14-2020組織蛋白
- T/CCMA 0166-2023施工升降機標識
- T/CCASC 6007-2023水合肼、ADC發泡劑行業清潔生產評價指標體系
- T/CCAAS 001-2023“黨建+企業文化管理”評價標準
- T/CATCM 026-2023中藥液體廢棄物循環利用指導原則
- 消費者權益保護工作培訓課件
- 長城:一部世界文化遺產的史詩
- 二次供水水箱清洗合同
- 地腳螺栓安裝方案
- 工廠管理制度制度
- 餐飲服務食品安全監督量化分級管理制度
- 2023年中國財稅服務行業市場全景評估及未來投資趨勢預測
- 醫療衛生事業單位面試題型及答題技巧
- 腫瘤科運用PDCA循環提高疼痛評估的規范率品管圈成果匯報
- 管道安全檢查表
- 心理劇比賽點評金句
評論
0/150
提交評論