




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ThestateofAIin2022—andahalfdecadeinreview
December2022
Theresultsofthisyear’sMcKinseyGlobalSurveyonAIshowtheexpansionofthe
technology’susesincewebegantrackingitfiveyearsago,butwithanuanced
pictureunderneath.1Adoptionhasmorethandoubledsince2017,thoughthepro-
portionoforganizationsusingAIhasplateauedbetween50and60percentfor
thepastfewyears.AsetofcompaniesseeingthehighestfinancialreturnsfromAIcontinuetopullaheadofcompetitors.TheresultsshowtheseleadersmakinglargerinvestmentsinAI,engaginginincreasinglyadvancedpracticesknowntoenable
scaleandfasterAIdevelopment,andshowingsignsoffaringbetterinthetight
marketforAItalent.Ontalent,forthefirsttime,welookedcloselyatAIhiringand
upskilling.ThedatashowthatthereissignificantroomtoimprovediversityonAI
teams,and,consistentwithotherstudies,diverseteamscorrelatewithoutstandingperformance.
Fiveyearsin
review:AIadoption,impact,andspend
Thismarksthefifthconsecutiveyearwe’veconductedresearchgloballyonAI’sroleinbusiness,andwehaveseenshiftsoverthisperiod.
First,AIadoptionhasmorethandoubled.2In2017,20percentofrespondentsreportedadoptingAIinatleastonebusinessarea,whereastoday,thatfigurestandsat50percent,thoughitpeakedhigherin2019at58percent.
Meanwhile,theaveragenumberofAIcapabilitiesthatorganizationsuse,suchasnatural-languagegenerationandcomputervision,hasalsodoubled—from1.9in2018to3.8in2022.Amongthese
1Inthesurvey,wedefinedAIastheabilityofamachinetoperformcognitivefunctionsthatweassociatewithhumanminds(forexample,
natural-languageunderstandingandgeneration)andtoperformphysicaltasksusingcognitivefunctions(forexample,physicalrobotics,autonomousdriving,andmanufacturingwork).
2In2017,thedefinitionforAIadoptionwasusingAIinacorepartoftheorganization’sbusinessoratscale.In2018and2019,thedefinitionwasembeddingatleastoneAIcapabilityinbusinessprocessesorproducts.In2020,2021,and2022,thedefinitionwasthatthe
organizationhasadoptedAIinatleastonefunction.
2ThestateofAIin2022—andahalfdecadeinreview
capabilities,roboticprocessautomationandcomputervisionhaveremainedthemostcommonlydeployedeach
year,whilenatural-languagetextunderstandinghasadvancedfromthemiddleofthepackin2018tothefrontofthelistjustbehindcomputervision.
ResponsesshowanincreasingnumberofAIcapabilitiesembeddedinorganizationsoverthepastfiveyears.
AveragenumberofAIcapabilitiesthat
respondents’organizationshaveembeddedwithinatleastonefunctionorbusinessunit1
50
56
475850
20
.
ShareofrespondentswhosaytheirorganizationshaveadoptedAIinatleastonefunction,%
3.93.1
●
3.8
2.31.9
2018
2019
2020
2021
2022
201720182019202020212022
%ofrespondentswhosaygivenAIcapabilityisembeddedinproductsorbusinessprocessesinatleastonefunctionorbusinessunit2
Roboticprocessautomation39
Computervision34 Natural-languagetextunderstanding33Virtualagentsorconversationalinterfaces33
Deeplearning30
Knowledgegraphs25Recommendersystems25Digitaltwins24
Natural-languagespeechunderstanding23Physicalrobotics20
Reinforcementlearning20Facialrecognition18
Natural-languagegeneration18Transferlearning16
Generativeadversarialnetworks(GAN)11Transformers11
1Thenumberofcapabilitiesincludedinthesurveyhasgrownovertime,from9in2018to15inthe2022survey.2QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshaveadoptedAIinatleastonefunction.
ThestateofAIin2022—andahalfdecadeinreview3
Thetopusecases,however,haveremainedrelativelystable:optimizationofserviceoperationshastakenthetopspoteachofthepastfouryears.
Second,thelevelofinvestmentinAIhasincreasedalongsideitsrisingadoption.Forexample,fiveyearsago,40percentofrespondentsatorganizationsusingAIreportedmorethan5percentoftheirdigital
budgetswenttoAI,whereasnowmorethanhalfofrespondentsreportthatlevelofinvestment.Going
forward,63percentofrespondentssaytheyexpecttheirorganizations’investmenttoincreaseoverthenextthreeyears.
ThemostpopularAIusecasesspanarangeoffunctionalactivities.
Topusecases
Usecasesbyfunction
MostcommonlyadoptedAIusecases,byfunction,%ofrespondents1
Serviceoperations2Productand/orservicedevelopmentMarketingandsalesRisk
Serviceoperationsoptimization24CreationofnewAI-basedproducts20
Customerserviceanalytics19
Customersegmentation19NewAI-basedenhancementsofproducts19
Customeracquisitionandleadgeneration17Contact-centerautomation16Productfeatureoptimization16
Riskmodelingandanalytics15Predictiveserviceandintervention14
1Outof39usecases.QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshaveadoptedAIinatleastonefunction.2Eg,fieldservices,customercare,backoffice.
4ThestateofAIin2022—andahalf-decadeinreview
ThemostpopularAIusecasesspanarangeoffunctionalactivities.
Topusecases
Usecasesbyfunction
MostcommonlyadoptedAIusecaseswithineachbusinessfunction,%ofrespondents1
Serviceoperations2
Serviceoperationsoptimization
24
Contact-centerautomation
16
Marketingandsales
Customerserviceanalytics
19
Customersegmentation
19
Risk
Riskmodelingandanalytics
15
Fraudanddebtanalytics
11
Strategyandcorporate?nance
Capitalallocation7Treasurymanagement4M&Asupport4
Productand/orservicedevelopment
CreationofnewAI-basedproducts
NewAI-basedenhancementsofproducts
2019
Supplychainmanagement
Salesanddemandforecasting
Logisticsnetworkoptimization
109
Humanresources
Optimizationoftalentmanagement
Optimizationofworkforcedeployment
10
5
Manufacturing
13
Predictivemaintenance
11
Yield,energy,and/or
throughputoptimization
11
Simulations(eg,usingdigitaltwins,3Dmodeling)
1QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshaveadoptedAIinatleastonefunction.2Eg,fieldservices,customercare,backoffice.
Third,thespecificareasinwhichcompaniesseevaluefromAIhaveevolved.In2018,manufacturingandriskwerethetwofunctionsinwhichthelargestsharesofrespondentsreportedseeingvaluefromAI
use.Today,thebiggestreportedrevenueeffectsarefoundinmarketingandsales,productandservicedevelopment,andstrategyandcorporatefinance,andrespondentsreportthehighestcostbenefits
fromAIinsupplychainmanagement.Thebottom-linevaluerealizedfromAIremainsstrongandlargelyconsistent.Aboutaquarterofrespondentsreportthisyearthatatleast5percentoftheirorganizations’EBITwasattributabletoAIin2021,inlinewithfindingsfromtheprevioustwoyears,whenwe’vealso
trackedthismetric.
Lastly,onethingthathasremainedconcerninglyconsistentisthelevelofriskmitigationorganizations
engageintobolsterdigitaltrust.WhileAIusehasincreased,therehavebeennosubstantialincreasesinreportedmitigationofanyAI-relatedrisksfrom2019—whenwefirstbegancapturingthisdata—tonow.
ThestateofAIin2022—andahalfdecadeinreview5
AI-relatedcostdecreasesaremostoftenreportedinsupplychain
managementandrevenueincreasesinproductdevelopmentandmarketingandsales.
CostdecreaseandrevenueincreasefromAIadoptionin2021,byfunction,%ofrespondents1
Decreaseby10–19%
ServiceoperationsManufacturing
Humanresources
MarketingandsalesRisk
Supplychainmanagement52Productand/orservicedevelopment
Strategyandcorporate?nance
Averageacrossallactivites
1QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshaveadoptedAIinagivenfunction.Respondentswhosaid“nochange,”“costincrease,”“notapplicable,”or“don’tknow”arenotshown.
4529106
423273
29253
282143
433085
4174
Increaseby6–10%
37
Increaseby≤5%
57
Decreaseby<10%
Decreaseby≥20%
Increaseby>10%
3184
2363
2046
14
13
10
10
9
10
8
8
30
20
48
70
70
36
43
58
28
59
63
65
33
33
32
24
27
10
18
16
19
13
61
31
41
41
14
17
1
11
Therehasbeennosubstantialincreaseinorganizations’reportedmitigationofAI-relatedrisks.
AIrisksthatorganizationsconsiderrelevantandareworkingtomitigate,%ofrespondents1
20192022
51
48
3536
30
28
22
1718
13
11
74o
Regulatorycompliance
displacement
1QuestionwasaskedonlyofrespondentswhosaidtheirorganizationshadadoptedAIinatleastonefunction;n=1,151.Respondentswhosaid“don'tknow/notapplicable”arenotshown.
2Thatis,theabilitytoexplainhowAImodelscometotheirdecisions.
Organi-zational
reputation
Personal/
individual
privacy
Equity
and
fairness
Workforce/
labor
Nationalsecurity
Physicalsafety
Explain-ability2
Cyber-security
Politicalstability
22
19
19
15
17
4
2
6ThestateofAIin2022—andahalfdecadeinreview
McKinseycommentary
MichaelChui
Partner,McKinseyGlobalInstitute
Overthepasthalfdecade,duringwhichwe’vebeenconductingourglobalsurvey,wehaveseenthe“AIwinter”turnintoan“AIspring.”However,afteraperiodofinitialexuberance,weappeartohavereachedaplateau,acoursewe’veobservedwithothertechnologiesintheirearlyyearsof
adoption.Wemightbeseeingtherealitysinkinginatsomeorganizationsoftheleveloforganiza-tionalchangeittakestosuccessfullyembedthistechnology.
Inourwork,we’veencounteredcompaniesthatgetdiscouragedbecausetheywentintoAI
thinkingitwouldbeaquickexercise,whilethosetakingalongerviewhavemadesteadyprog-
ressbytransformingthemselvesintolearningorganizationsthatbuildtheirAImusclesovertime.ThesecompaniesgraduallyincorporatemoreAIcapabilitiesandstandupincreasinglymore
applicationsprogressivelyfasterandmoreeasilythankstolessonsfrompastsuccessesaswell
asfailures.Theynotonlyinvestmore,buttheyalsoinvestmorewisely,withthegoalofcreatingaveritableAIfactorythatenablesthemtoincorporatemoreAIinmoreareasofthebusiness,firstin
adjacentoneswheresomeexistingcapabilitiescanberepurposedandthenintoentirelynewones.
Thereis,atahighlevel,anemergingplaybookforgettingmaximumvaluefromAI.Eachyearthat
weconductourresearch,weseeagroupofleadersengaginginthetypesofpracticesthathelp
executeAIsuccessfully.It’spayingoffintheformofactualbottom-lineimpactatsignificantlevels.WealsoseeiteverydayasweguideothersontheirAIjourneys.It’snoteasywork,butashas
beenthecasewithprevioustechnologies,thegainswillgotothosewhostaythecourse.
Thosetakingalongerview
havemadesteadyprogressby
transformingthemselvesinto
learningorganizationsthatbuildtheirAImusclesovertime.
ThestateofAIin2022—andahalfdecadeinreview7
AIuseandsustainabilityefforts
ThesurveyfindingssuggestthatmanyorganizationsthathaveadoptedAIareintegratingAIcapabilitiesintotheirsustainabilityeffortsandarealsoactivelyseekingwaystoreducetheenvironmentalimpactoftheirAI
use(exhibit).Ofrespondentsfromorganizationsthat
haveadoptedAI,43percentsaytheirorganizationsareusingAItoassistinsustainabilityefforts,and40per-
centsaytheirorganizationsareworkingtoreducetheenvironmentalimpactoftheirAIusebyminimizingtheenergyusedtotrainandrunAImodels.AscompaniesthathaveinvestedmoreinAIandhavemoremature
AIeffortsthanothers,highperformersare1.4times
morelikelythanotherstoreportAI-enabledsustain-
abilityeffortsaswellastosaytheirorganizationsare
workingtodecreaseAI-relatedemissions.Bothefforts
aremorecommonlyseenatorganizationsbasedin
GreaterChina,Asia–Pacific,anddevelopingmarkets,whilerespondentsinNorthAmericaareleastlikelytoreportthem.
WhenaskedaboutthetypesofsustainabilityeffortsusingAI,respondentsmostoftenmentioninitiativestoimproveenvironmentalimpact,suchasoptimiza-
tionofenergyefficiencyorwastereduction.AIuse
isleastcommonineffortstoimproveorganizations’
socialimpact(forexample,sourcingofethicallymadeproducts),thoughrespondentsworkingforNorth
Americanorganizationsaremorelikelythantheirpeerstoreportthatuse.
Exhibit
OrganizationsareusingAIwithinsustainabilityefortsandareworkingtoreducetheenvironmentalimpactoftheirAIuse.
OrganizationsusingAIintheirsustainabilityeforts,%ofrespondents1
GreaterChina261
Asia–Pacic54Developingmarkets344
Europe39NorthAmerica30
Improvingtheorganization’senvironmentalimpact(eg,improvingenergyefficiency,optimizingtransportation)
Evaluatingsustainabilityefforts(eg,benchmarking)
Improvingtheorganization’sgovernance
(eg,regulatorycompliance,riskmanagement)
Improvingtheorganization’ssocial
impact(eg,sourcingethicalproducts)
OrganizationstakingstepstoreducecarbonemissionsfromtheirAIuse,%ofrespondents1
Developingmarkets353Asia–Pacic47
GreaterChina246Europe36
62
NorthAmerica31
Typesofsustainabilityefortsinwhichrespondents’organizationsareusingAI?
51
45
34
1OnlyaskedofrespondentswhoseorganizationshaveadoptedAIinatleastonefunction.FororganizationsbasedinGreaterChina,n=102;forAsia–Pacific,n=74;fordevelopingmarkets,n=118;forEurope,n=260;andforNorthAmerica,n=190.
2IncludesrespondentsinHongKongSARandTaiwanChina.
3?
IncludesrespondentsinIndia,LatinAmerica,MiddleEast,NorthAfrica,andsub-SaharanAfrica.
OnlyaskedofrespondentswhoseorganizationshaveadoptedAIinatleastonebusinessunitorfunctionwhosaidthattheirorganizationsareusingAIin
sustainabilityefforts;n=302.
8ThestateofAIin2022—andahalfdecadeinreview
Mindthegap:AI
leaderspullingahead
Overthepastfiveyears,wehavetrackedtheleadersinAI—werefertothemasAIhighperformers—andexaminedwhattheydodifferently.Weseemoreindicationsthattheseleadersareexpandingtheir
competitiveadvantagethanwefindevidencethatothersarecatchingup.
First,wehaven’tseenanexpansioninthesizeoftheleadergroup.Forthepastthreeyears,wehavedefinedAIhighperformersasthoseorganizationsthatrespondentssayareseeingthebiggest
bottom-lineimpactfromAIadoption—thatis,20percentormoreofEBITfromAIuse.Theproportionofrespondentsfallingintothatgrouphasremainedsteadyatabout8percent.ThefindingsindicatethatthisgroupisachievingitssuperiorresultsmainlyfromAIboostingtop-linegains,asthey’remorelikelytoreportthatAIisdrivingrevenuesratherthanreducingcosts,thoughtheydoreportAIdecreasing
costsaswell.
Next,highperformersaremorelikelythanotherstofollowcorepracticesthatunlockvalue,such
aslinkingtheirAIstrategytobusinessoutcomes.3Alsoimportant,theyareengagingmoreoften
in“frontier”practicesthatenableAIdevelopmentanddeploymentatscale,orwhatsomecallthe
“industrializationofAI.”Forexample,leadersaremorelikelytohaveadataarchitecturethatismodularenoughtoaccommodatenewAIapplicationsrapidly.Theyalsooftenautomatemostdata-related
processes,whichcanbothimproveefficiencyinAIdevelopmentandexpandthenumberofapplicationstheycandevelopbyprovidingmorehigh-qualitydatatofeedintoAIalgorithms.AndAIhighperformersare1.6timesmorelikelythanotherorganizationstoengagenontechnicalemployeesincreatingAI
applicationsbyusingemerginglow-codeorno-codeprograms,whichallowcompaniestospeedup
thecreationofAIapplications.Inthepastyear,highperformershavebecomeevenmorelikelythan
otherorganizationstofollowcertainadvancedscalingpractices,suchasusingstandardizedtoolsets
tocreateproduction-readydatapipelinesandusinganend-to-endplatformforAI-relateddatascience,dataengineering,andapplicationdevelopmentthatthey’vedevelopedin-house.
HighperformersmightalsohaveaheadstartonmanagingpotentialAI-relatedrisks,suchaspersonalprivacyandequityandfairness,thatotherorganizationshavenotaddressedyet.Whileoverall,we
haveseenlittlechangeinorganizationsreportingrecognitionandmitigationofAI-relatedriskssincewebeganaskingaboutthemfouryearsago,respondentsfromAIhighperformersaremorelikely
thanotherstoreportthattheyengageinpracticesthatareknowntohelpmitigaterisk.TheseincludeensuringAIanddatagovernance,standardizingprocessesandprotocols,automatingprocessessuchasdataqualitycontroltoremoveerrorsintroducedthroughmanualwork,andtestingthevalidityof
modelsandmonitoringthemovertimeforpotentialissues.
3AllquestionsaboutAI-relatedstrengthsandpracticeswereaskedonlyofthe744respondentswhosaidtheirorganizationshadadoptedAIinatleastonefunction,n=744.
ThestateofAIin2022—andahalfdecadeinreview9
OrganizationsseeingthehighestreturnsfromAIaremorelikelytofollowstrategy,data,models,tools,technology,andtalentbestpractices.
Shareofrespondentsreportingtheirorganizationsengageineachpractice,1%ofrespondents
Strategy
Data
Models,tools,andtech
Talentandwaysofworking
HavearoadmapthatclearlyprioritizesAIinitiativeslinkedtobusinessvalueacrossorganization
HaveanAIstrategythatisalignedwiththebroadercorporatestrategyandgoals
Seniormanagementthatisfullyalignedandcommittedtoorganization’sAIstrategy
HaveaclearlydefinedAIvisionandstrategy
AppointedacredibleleaderofAIinitiativeswhoisempoweredtomovethemforwardincollaborationwithpeersacrossbusinessunitsandfunctions
Systematicallytrackacomprehensivesetofwell-de?nedKPIstomeasuretheincrementalimpactofAIinitiatives
HaveaclearframeworkforAIgovernancethatcoverseverystepofthemodeldevelopmentprocess
AllotherrespondentsAIhighperformers2
0
20
60
80
40
100
Strategy
Data
Models,tools,andtech
Talentandwaysofworking
AllotherrespondentsAIhighperformers2
HaveabilitytointegratedataintoAImodelsasquicklyasneeded(eg,innearrealtime)
Integratestructuredinternaldata(eg,adatalakethatcontainscustomerdataacrossbusinessunits)touseinAIinitiatives
Integrateexternaldata(eg,opensource,purchased)touseinAIinitiatives
Integrateunstructuredinternaldata(eg,textualcall-centerlogs)touseinAIinitiatives
GeneratesyntheticdatatotrainAImodelswhenthereareinsufficientnaturaldatasets
HaveamodularenoughdataarchitecturetorapidlyaccommodatetheneedsofnewAIusecases
Automatemostdata-relatedprocesses(eg,datalabeling,dataqualitycontrol)
HavescalableinternalprocessesforlabelingAItrainingdata
12
PracticesshownherearerepresentativeofthosewiththehighestdeltasbetweenAIhighperformersandotherrespondents.Notallpracticesareshown.Respondentswhosaidthatatleast20percentoftheirorganizations’EBITin2021wasattributabletotheiruseofAI.
10ThestateofAIin2022—andahalfdecadeinreview
OrganizationsseeingthehighestreturnsfromAIaremorelikelytofollowstrategy,data,models,tools,technology,andtalentbestpractices.
Shareofrespondentsreportingtheirorganizationsengageineachpractice,1%ofrespondents
Strategy
Data
Models,tools,andtech
Talentandwaysofworking
DevelopAImodelsthatcanprovideaccurate,usableresultsleveragingsmalleramountsofdata(ie,“smalldata”)
RegularlyrefreshAImodelsbasedonclearlydefinedcriteriaforwhenandwhytodoso
Developedin-housetheend-to-endplatformusedforAI-relateddatascience,dataengineering,andapplicationdevelopment
Useastandardizedtoolsettocreateproduction-readydatapipelines
Developmodularcomponents(eg,datamodellayers,datapipelines)sotheycanbereusedinAIapplications
RefreshAI/machinelearningtechstackatleastannuallytotakeadvantageofthelatesttechnologicaladvances
AutomatethefulllifecycleforAImodeldevelopment(eg,fromdataingestionandqualitycontrolthroughmodelmonitoring)
Usetheorganization’sownhigh-performancecomputingclusterforAIworkloads
AllotherrespondentsAIhighperformers2
0
20
60
80
40
100
Strategy
Data
Models,tools,andtech
Talentandwaysofworking
AllotherrespondentsAIhighperformers2
TakeafulllifecycleapproachtodevelopinganddeployingAImodels
IntegrateAItechnologiesintobusinessprocesses(eg,day-to-dayoperations,employeeworkflows)
TeamsfordatascienceandAIdesignanddevelopmentcollaboratetobuildandimproveAIapplications
Havewell-definedcapability-buildingprogramstodeveloptechnologypersonnels’AIskills
TrainnontechnicalpersonneltouseAItoimprovedecisionmaking
AIdevelopmentteamsfollowstandardprotocols(eg,toolframeworks,developmentprocesses)forbuildinganddeliveringAItools
0
20
60
80
40
100
12
PracticesshownherearerepresentativeofthosewiththehighestdeltasbetweenAIhighperformersandotherrespondents.Notallpracticesareshown.Respondentswhosaidthatatleast20percentoftheirorganizations’EBITin2021wasattributabletotheiruseofAI.
ThestateofAIin2022—andahalfdecadeinreview11
Investmentisyetanotherareathatcouldcontributetothewideningofthegap:AIhighperformersare
poisedtocontinueoutspendingotherorganizationsonAIefforts.Eventhoughrespondentsatthose
leadingorganizationsarejustaslikelyasotherstosaythey’llincreaseinvestmentsinthefuture,they’re
spendingmorethanothersnow,meaningthey’llbeincreasingfromabasethatisahigherpercentageof
revenues.RespondentsatAIhighperformersarenearlyeighttimesmorelikelythantheirpeerstosaytheirorganizationsspendatleast20percentoftheirdigital-technologybudgetsonAI-relatedtechnologies.
Andthesedigitalbudgetsmakeupamuchlargerproportionoftheirenterprisespend:respondentsatAIhighperformersareoverfivetimesmorelikelythanotherrespondentstoreportthattheirorganizationsspendmorethan20percentoftheirenterprise-widerevenueondigitaltechnologies.
Finally,allofthismaybegivingAIhighperformersalegupinattractingAItalent.ThereareindicationsthattheseorganizationshavelessdifficultyhiringforrolessuchasAIdatascientistanddataengineer.RespondentsfromorganizationsthatarenotAIhighperformerssayfillingthoseroleshasbeen“verydifficult”muchmoreoftenthanrespondentsfromAIhighperformersdo.
Thebottomline:highperformersarealreadywellpositionedforsustainedAIsuccess,improvedefficiency
innewAIdevelopment,andaresultinglymoreattractiveenvironmentfortalent.Thegoodnewsfororganizationsoutsidetheleadergroupisthatthere’saclearblueprintofbestpracticesforsuccess.
RespondentsatAIhighperformersarenearly
eighttimesmorelikelythantheirpeerstosaytheirorganizationsspendatleast20percentoftheir
digital-technologybudgetsonAI-relatedtechnologies.
12ThestateofAIin2022—andahalf-decadeinreview
McKinseycommentary
BryceHall
Associatepartner
Overtheyearsofourresearch,we’vecontinuedtorefineourunderstandingofthespecific
practicesthatleadingcompaniesaredoingwellandthecapabilitiestheyhaveinplacetocapturevaluefromAI.Recently,anewsetof“frontier”practiceshasemergedasorganizationsshiftfromexperimentingwithAItoindustrializingit.Theseincludemachinelearningoperations(MLOps)
practicessuchasassetization,orturningelementslikecodeintoreusableassetsthatcanbeappliedoverandoverindifferentbusinessapplications.
Butovertheyears,we’vealsoconsistentlyseenasetoffoundationalpracticesthatthese
organizationsaregettingright.Throughourwork,we’velearnednottodescribetheseas“basic”practices,becausetheyaresomeofthemostdifficulttoimplement.Manyoftheseinvolvethe
peopleelementsthatneedtobeinplaceforcompaniestoadoptAIsuccessfully,suchashavingaclearunderstandingofwhatspecifictechtalentrolesareneededandsuccessfullyintegratingAIintobusinessprocessesanddecisionmaking.Asproveninmanycases,AIenginesandpeopletogethercancreatemuchmorevaluethaneithercanindividually.
AstheAIfrontieradvances,wecontinuetobeinspiredbysometrulyinnovativeapplicationsof
AI,suchastheuseofAItoidentifynewdrugs,createhyperpersonalizedrecommendationsfor
consumers,andpowerAIsimulationsindigitaltwinstooptimizeperformanceacrossavariety
ofsettings.AsindividualAIcapabilities,suchasnatural-languageprocessingandgeneration,
continuetoimproveanddemocratize,we’reexcitedtoseeawaveofnewapplicationsemergeandmorecompaniescapturevaluefromAIatscale.
ThestateofAIin2022—andahalfdecadeinreview13
AItalenttales:Newhotroles,continueddiversitywoes
OurfirstdetailedlookattheAItalentpicturesignalsthematurationofAI,surfacesthemostcommonstrategiesorganizationsemployfortalentsourcingandupskilling,andshinesalightonAI’sdiversityproblem—whileshowingyetagainalinkbetweendiversityandsuccess.
Hiringisachallenge,butlesssoforhighperformers
Softwareengineersemerge
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電纜購銷合同
- 烘焙店創業計劃書
- 風險共擔合同書
- 中國戲曲課件
- 工程合作投資合同模板
- 幼兒園教師聘用合同
- 城市綠化養護項目勞務承包合同
- 胃腸道造瘺管護理
- 維修工程師聘任合同
- 竇性心律失常的護理措施
- 衛生法(教學講解課件)
- 高三沖刺100天勵志主題班會課件
- 全國工業產品生產許可證申請書
- 德能勤績廉個人總結的
- 中層干部崗位競聘報名表格評分表格評分標準
- 思想道德與法治課件:第六章 第一節 社會主義法律的特征和運行
- 有限空間作業及應急物資清單
- 《個人信息保護法》解讀
- GB∕T 3216-2016 回轉動力泵 水力性能驗收試驗 1級、2級和3級
- 新疆高速公路建設工程季節性施工方案
- 新版(七步法案例)PFMEA
評論
0/150
提交評論