




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省棗陽市高級中學2025屆高三一診考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.2.設,則(
)A.10 B.11 C.12 D.133.若實數滿足不等式組則的最小值等于()A. B. C. D.4.在平行四邊形中,若則()A. B. C. D.5.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.36.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.7.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.8.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.9.已知向量,是單位向量,若,則()A. B. C. D.10.關于圓周率π,數學發展史上出現過許多很有創意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數對;再統計兩數能與構成鈍角三角形三邊的數對的個數;最后再根據統計數估計的值,那么可以估計的值約為()A. B. C. D.11.圓心為且和軸相切的圓的方程是()A. B.C. D.12.已知函,,則的最小值為()A. B.1 C.0 D.二、填空題:本題共4小題,每小題5分,共20分。13.經過橢圓中心的直線與橢圓相交于、兩點(點在第一象限),過點作軸的垂線,垂足為點.設直線與橢圓的另一個交點為.則的值是________________.14.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.15.已知函數,若恒成立,則的取值范圍是___________.16.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,設為的導數,.(1)求,;(2)猜想的表達式,并證明你的結論.18.(12分)已知函數和的圖象關于原點對稱,且.(1)解關于的不等式;(2)如果對,不等式恒成立,求實數的取值范圍.19.(12分)某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失敗.晉級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據已知條件完成下面列聯表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求的分布列與數學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02420.(12分)在某外國語學校舉行的(高中生數學建模大賽)中,參與大賽的女生與男生人數之比為,且成績分布在,分數在以上(含)的同學獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數據用該組區間的中點值作代表);(Ⅱ)填寫下面的列聯表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關”.女生男生總計獲獎不獲獎總計附表及公式:其中,.21.(12分)△ABC的內角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.22.(10分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.2、B【解析】
根據題中給出的分段函數,只要將問題轉化為求x≥10內的函數值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數中求函數的值,屬于基礎題.3、A【解析】
首先畫出可行域,利用目標函數的幾何意義求的最小值.【詳解】解:作出實數,滿足不等式組表示的平面區域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.【點睛】本題考查了簡單線性規劃問題,求目標函數的最值先畫出可行域,利用幾何意義求值,屬于中檔題.4、C【解析】
由,,利用平面向量的數量積運算,先求得利用平行四邊形的性質可得結果.【詳解】如圖所示,
平行四邊形中,,
,,,
因為,
所以
,
,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).5、C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;6、A【解析】
設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題7、A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.8、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.9、C【解析】
設,根據題意求出的值,代入向量夾角公式,即可得答案;【詳解】設,,是單位向量,,,,聯立方程解得:或當時,;當時,;綜上所述:.故選:C.【點睛】本題考查向量的模、夾角計算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意的兩種情況.10、D【解析】
由試驗結果知對0~1之間的均勻隨機數,滿足,面積為1,再計算構成鈍角三角形三邊的數對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據題意知,名同學取對都小于的正實數對,即,對應區域為邊長為的正方形,其面積為,若兩個正實數能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.11、A【解析】
求出所求圓的半徑,可得出所求圓的標準方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎題.12、B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數的最值,涉及到二倍角公式的應用,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出圖形,設點,則、,設點,利用點差法得出,利用斜率公式得出,進而可得出,可得出,由此可求得的值.【詳解】設點,則、,設點,則,兩式相減得,即,即,由斜率公式得,,,故,因此,.故答案為:.【點睛】本題考查橢圓中角的余弦值的求解,涉及了點差法與斜率公式的應用,考查計算能力,屬于中等題.14、【解析】
取基向量,,然后根據三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【詳解】如圖:設,又,且存在實數使得,,,,,,故答案為:.【點睛】本題考查了平面向量數量積的性質及其運算,屬中檔題.15、【解析】
求導得到,討論和兩種情況,計算時,函數在上單調遞減,故,不符合,排除,得到答案。【詳解】因為,所以,因為,所以.當,即時,,則在上單調遞增,從而,故符合題意;當,即時,因為在上單調遞增,且,所以存在唯一的,使得.令,得,則在上單調遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點睛】本題考查了不等式恒成立問題,轉化為函數的最值問題是解題的關鍵.16、【解析】
轉化為,利用二倍角公式可求解得,結合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、,;,證明見解析【解析】
對函數進行求導,并通過三角恒等變換進行轉化求得的表達式,對函數再進行求導并通過三角恒等變換進行轉化求得的表達式;根據中,的表達式進行歸納猜想,再利用數學歸納法證明即可.【詳解】(1),其中,[,其中,(2)猜想,下面用數學歸納法證明:①當時,成立,②假設時,猜想成立即當時,當時,猜想成立由①②對成立【點睛】本題考查導數及其應用、三角恒等變換、歸納與猜想和數學歸納法;考查學生的邏輯推理能力和運算求解能力;熟練掌握用數學歸納法進行證明的步驟是求解本題的關鍵;屬于中檔題.18、(1)(2)【解析】試題分析:(1)由函數和的圖象關于原點對稱可得的表達式,再去掉絕對值即可解不等式;(2)對,不等式成立等價于,去絕對值得不等式組,即可求得實數的取值范圍.試題解析:(1)∵函數和的圖象關于原點對稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.19、(1);(2)列聯表見解析,有超過的把握認為“晉級成功”與性別有關;(3)分布列見解析,=3【解析】
(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級成功的頻率,計算晉級成功的人數,填寫列聯表,計算觀測值,對照臨界值得出結論;(3)由頻率分布直方圖知晉級失敗的頻率,將頻率視為概率,知隨機變量服從二項分布,計算對應的概率值,寫出分布列,計算數學期望.【詳解】解:(1)由頻率分布直方圖各小長方形面積總和為1,可知,解得;(2)由頻率分布直方圖知,晉級成功的頻率為,所以晉級成功的人數為(人),填表如下:晉級成功晉級失敗合計男163450女94150合計2575100假設“晉級成功”與性別無關,根據上表數據代入公式可得,所以有超過的把握認為“晉級成功”與性別有關;(3)由頻率分布直方圖知晉級失敗的頻率為,將頻率視為概率,則從本次考試的所有人員中,隨機抽取1人進行約談,這人晉級失敗的概率為0.75,所以可視為服從二項分布,即,,故,,,,.所以的分布列為:01234數學期望為.或().【點睛】本題考查了頻率分布直方圖和離散型隨機變量的分布列、數學期望的應用問題,屬于中檔題.若離散型隨機變量,則.20、(Ⅰ),;(Ⅱ)詳見解析.【解析】
(Ⅰ)根據概率的性質知所有矩形的面積之和等于列式可解得;(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數為,不獲獎的人數為,從而可得列聯表,再計算出,與臨界值比較可得.【詳解】解:(Ⅰ),.(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數為,不獲獎的人數為,列聯表如下:女生男生總計獲獎不獲獎總計因為,所以在犯錯誤的概率不超過的前提下能認為“獲獎與女生,男生有關.”【點睛】本題主要考查獨立性檢驗,以及由頻率分布直方圖求平均數的問題,熟記獨立性檢驗的思想,以及平均數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論