




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省興寧市水口中學高三3月份第一次模擬考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是函數在區間上的圖象,為了得到這個函數的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變為原來的,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變為原來的2倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變為原來的,縱坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變為原來的2倍,縱坐標不變2.設向量,滿足,,,則的取值范圍是A. B.C. D.3.已知函數,若不等式對任意的恒成立,則實數k的取值范圍是()A. B. C. D.4.已知排球發球考試規則:每位考生最多可發球三次,若發球成功,則停止發球,否則一直發到次結束為止.某考生一次發球成功的概率為,發球次數為,若的數學期望,則的取值范圍為()A. B. C. D.5.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.6.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]7.已知復數和復數,則為A. B. C. D.8.函數的大致圖象是()A. B.C. D.9.設復數滿足(為虛數單位),則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件11.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.12.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.90二、填空題:本題共4小題,每小題5分,共20分。13.有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中隨機取出4個,則取出球的編號互不相同的概率為_______________.14.已知數列滿足,,若,則數列的前n項和______.15.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面16.若正三棱柱的所有棱長均為2,點為側棱上任意一點,則四棱錐的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數和的單調性;(3)設,求證:.18.(12分)已知函數,.(1)求曲線在點處的切線方程;(2)求函數的單調區間;(3)判斷函數的零點個數.19.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.20.(12分)函數(1)證明:;(2)若存在,且,使得成立,求取值范圍.21.(12分)已知在平面直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.22.(10分)已知各項均不相等的等差數列的前項和為,且成等比數列.(1)求數列的通項公式;(2)求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由函數的最大值求出,根據周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結合坐標變換關系,即可求出結論.【詳解】由圖可知,,又,,又,,,為了得到這個函數的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變為原來的(縱坐標不變)即可.故選:A【點睛】本題考查函數的圖象求解析式,考查函數圖象間的變換關系,屬于中檔題.2、B【解析】
由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數量積,考查模長公式,準確計算是關鍵,是基礎題.3、A【解析】
先求出函數在處的切線方程,在同一直角坐標系內畫出函數和的圖象,利用數形結合進行求解即可.【詳解】當時,,所以函數在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內畫出函數和的圖象如下圖的所示:利用數形結合思想可知:不等式對任意的恒成立,則實數k的取值范圍是.故選:A【點睛】本題考查了利用數形結合思想解決不等式恒成立問題,考查了導數的應用,屬于中檔題.4、A【解析】
根據題意,分別求出再根據離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發球分為兩種情況:三次都不成功、第三次成功5、C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.6、B【解析】
先求出,得到,再結合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.7、C【解析】
利用復數的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數的三角形式的乘法運算法則是解題的關鍵,復數問題高考必考,常見考點有:點坐標和復數的對應關系,點的象限和復數的對應關系,復數的加減乘除運算,復數的模長的計算.8、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數圖象,屬基礎題.9、D【解析】
先把變形為,然后利用復數代數形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.10、C【解析】
根據線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據線面平行的性質定理,可得;若,根據線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.11、C【解析】
聯立方程解得M(3,),根據MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.【點睛】本題考查了直線和拋物線的位置關系,意在考查學生的計算能力和轉化能力.12、A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:從編號分別為1,1,3,4,5的5個紅球和5個黑球,從中隨機取出4個,有種不同的結果,由于是隨機取出的,所以每個結果出現的可能性是相等的;設事件為“取出球的編號互不相同”,則事件包含了個基本事件,所以.考點:1.計數原理;1.古典概型.14、【解析】
,求得的通項,進而求得,得通項公式,利用等比數列求和即可.【詳解】由題為等差數列,∴,∴,∴,∴,故答案為【點睛】本題考查求等差數列數列通項,等比數列求和,熟記等差等比性質,熟練運算是關鍵,是基礎題.15、π.【解析】
設三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關問題,根據立體幾何中的線段關系求動點的軌跡,屬于中檔題.16、【解析】
依題意得,再求點到平面的距離為點到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長均為2,則,點到平面的距離為點到直線的距離所以,所以.故答案為:【點睛】本題考查椎體的體積公式,考查運算能力,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)為減函數,為增函數.(3)證明見解析【解析】
(1)求出導函數,求出切線方程,令得切線的縱截距,可得(必須利用函數的單調性求解);(2)求函數的導數,由導數的正負確定單調性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結論.【詳解】解:(1)對求導,得.因此.又因為,所以曲線在點處的切線方程為,即.由題意,.顯然,適合上式.令,求導得,因此為增函數:故是唯一解.(2)由(1)可知,,因為,所以為減函數.因為,所以為增函數.(3)證明:由,易得.由(2)可知,在上為減函數.因此,當時,,即.令,得,即.因此,當時,.所以成立.下面證明:.由(2)可知,在上為增函數.因此,當時,,即.因此,即.令,得,即.當時,.因為,所以,所以.所以,當時,.所以,當時,成立.綜上所述,當時,成立.【點睛】本題考查導數的幾何意義,考查用導數研究函數的單調性,考查用導數證明不等式.本題中不等式的證明,考查了轉化與化歸的能力,把不等式變形后利用第(2)小題函數的單調性得出數列的不等關系:,.這是最關鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.18、(1)(2)答案見解析(3)答案見解析【解析】
(1)設曲線在點,處的切線的斜率為,可求得,,利用直線的點斜式方程即可求得答案;(2)由(Ⅰ)知,,分時,,三類討論,即可求得各種情況下的的單調區間為;(3)分與兩類討論,即可判斷函數的零點個數.【詳解】(1),,設曲線在點,處的切線的斜率為,則,又,曲線在點,處的切線方程為:,即;(2)由(1)知,,故當時,,所以在上單調遞增;當時,,;,,;的遞減區間為,遞增區間為,;當時,同理可得的遞增區間為,遞減區間為,;綜上所述,時,單調遞增為,無遞減區間;當時,的遞減區間為,遞增區間為,;當時,的遞增區間為,遞減區間為,;(3)當時,恒成立,所以無零點;當時,由,得:,只有一個零點.【點睛】本題考查利用導數研究曲線上某點的切線方程,利用導數研究函數的單調性,考查分類討論思想與推理、運算能力,屬于中檔題.19、(1);(2).【解析】
(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數值域的方法即可得到答案.【詳解】(1)因為,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因為,所以.(2)由(1)得,在中,,所以.因為,所以,所以當,即時,有最大值1,所以的最大值為.【點睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數量積的坐標運算,是一道容易題.20、(1)證明見詳解;(2)或或【解析】
(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因為所以(2)當時所以當且僅當即時等號成立因為存在,且,使得成立所以所以或解得:或或【點睛】1.要熟練掌握絕對值的三角不等式,即2.應用基本不等式求最值時要滿足“一正二定三相等”.21、(1)(2)最大值;最小值.【解析】
(1)結合極坐標和直角坐標的互化公式可得;(2)利用參數方程,求解點到直線的距離公式,結合三角函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省德州市躍華中學2024-2025學年高三年級5月聯考試題含解析
- 西藏拉薩市那曲二中2024-2025學年高三下5月第一次階段達標檢測試題英語試題含解析
- 江蘇省南京市鼓樓區鳳凰花園城小學2025年三年級數學第二學期期末教學質量檢測試題含解析
- 延邊市重點中學2025年初三下學期摸底數學試題含解析
- 江西省南昌市心遠中學2025年初三3月統一練習(一)英語試題含答案
- 重慶二手房交易合同示范文本
- 山東省濰坊市臨朐縣2025屆初三下學期模擬卷(四)物理試題含解析
- 山東省煙臺市第二中學2024-2025學年高三下學期周考英語試題(重點)試題含解析
- 河南省信陽市2024-2025學年高二下學期期中考試歷史試題(含答案)
- 第一單元第二課《美術家族成員多》教學設計-魯教版五四制六年級美術上冊
- 質譜法在食品樣本農藥殘留分析中的應用進展
- 2023-2024學年天津市部分區八年級(下)期中數學試卷(含解析)
- Proface普洛菲斯觸摸屏與三菱PLC(QLFX5UR)連接設置指南
- 醫藥公司質量負責人變更專項內審
- 手術室暖心服務
- 藥品經營和使用質量監督管理辦法-專業解讀課件
- 大動脈炎完整版本
- 新版劍橋少兒英語預備級上冊測試卷PrestartersA
- 一次函數單元教學設計
- 2024紀檢監察綜合業務考試題庫(含答案)
- 中國LNG燃料船行業市場現狀分析及競爭格局與投資發展研究報告2024-2029版
評論
0/150
提交評論