




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
專題05立體幾何(選填題)(理科專用)1.【2022年新高考1卷】南水北調工程緩解了北方一些地區水資源短缺問題,其中一部分水蓄入某水庫.已知該水庫水位為海拔148.5m時,相應水面的面積為140.0km2;水位為海拔157.5m時,相應水面的面積為A.1.0×109m3 B.1.2×109【答案】C【解析】【分析】根據題意只要求出棱臺的高,即可利用棱臺的體積公式求出.【詳解】依題意可知棱臺的高為MN=157.5-148.5=9(m),所以增加的水量即為棱臺的體積V.棱臺上底面積S=140.0km2=140×∴V==3×320+60故選:C.
2.【2022年新高考1卷】已知正四棱錐的側棱長為l,其各頂點都在同一球面上.若該球的體積為36π,且3≤l≤33,則該正四棱錐體積的取值范圍是(
A.18,814 B.274,814【答案】C【解析】【分析】設正四棱錐的高為h,由球的截面性質列方程求出正四棱錐的底面邊長與高的關系,由此確定正四棱錐體積的取值范圍.【詳解】∵球的體積為36π,所以球的半徑R=3,設正四棱錐的底面邊長為2a,高為h,則l2=2a所以6h=l所以正四棱錐的體積V=1所以V'當3≤l≤26時,V'>0,當2所以當l=26時,正四棱錐的體積V取最大值,最大值為64又l=3時,V=274,l=33所以正四棱錐的體積V的最小值為274所以該正四棱錐體積的取值范圍是274故選:C.
3.【2022年新高考2卷】已知正三棱臺的高為1,上、下底面邊長分別為33和43,其頂點都在同一球面上,則該球的表面積為(A.100π B.128π C.144π D.192π【答案】A【解析】【分析】根據題意可求出正三棱臺上下底面所在圓面的半徑r1【詳解】設正三棱臺上下底面所在圓面的半徑r1,r2,所以2r1=33sin60°,2r2=43sin60°,即r1故選:A.
4.【2021年甲卷理科】2020年12月8日,中國和尼泊爾聯合公布珠穆朗瑪峰最新高程為8848.86(單位:m),三角高程測量法是珠峰高程測量方法之一.如圖是三角高程測量法的一個示意圖,現有A,B,C三點,且A,B,C在同一水平面上的投影滿足,.由C點測得B點的仰角為,與的差為100;由B點測得A點的仰角為,則A,C兩點到水平面的高度差約為()(
)A.346 B.373 C.446 D.473【答案】B【解析】【分析】通過做輔助線,將已知所求量轉化到一個三角形中,借助正弦定理,求得,進而得到答案.【詳解】過作,過作,故,由題,易知為等腰直角三角形,所以.所以.因為,所以在中,由正弦定理得:,而,所以所以.故選:B.【點睛】本題關鍵點在于如何正確將的長度通過作輔助線的方式轉化為.
5.【2021年甲卷理科】已如A,B,C是半徑為1的球O的球面上的三個點,且,則三棱錐的體積為(
)A. B. C. D.【答案】A【解析】【分析】由題可得為等腰直角三角形,得出外接圓的半徑,則可求得到平面的距離,進而求得體積.【詳解】,為等腰直角三角形,,則外接圓的半徑為,又球的半徑為1,設到平面的距離為,則,所以.故選:A.【點睛】關鍵點睛:本題考查球內幾何體問題,解題的關鍵是正確利用截面圓半徑、球半徑、球心到截面距離的勾股關系求解.
6.【2021年新高考1卷】已知圓錐的底面半徑為,其側面展開圖為一個半圓,則該圓錐的母線長為(
)A. B. C. D.【答案】B【解析】【分析】設圓錐的母線長為,根據圓錐底面圓的周長等于扇形的弧長可求得的值,即為所求.【詳解】設圓錐的母線長為,由于圓錐底面圓的周長等于扇形的弧長,則,解得.故選:B.
7.【2021年新高考2卷】正四棱臺的上?下底面的邊長分別為2,4,側棱長為2,則其體積為(
)A. B. C. D.【答案】D【解析】【分析】由四棱臺的幾何特征算出該幾何體的高及上下底面面積,再由棱臺的體積公式即可得解.【詳解】作出圖形,連接該正四棱臺上下底面的中心,如圖,因為該四棱臺上下底面邊長分別為2,4,側棱長為2,所以該棱臺的高,下底面面積,上底面面積,所以該棱臺的體積.故選:D.
8.【2020年新課標1卷理科】埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個正四棱錐,以該四棱錐的高為邊長的正方形面積等于該四棱錐一個側面三角形的面積,則其側面三角形底邊上的高與底面正方形的邊長的比值為(
)
A. B. C. D.【答案】C【解析】【分析】設,利用得到關于的方程,解方程即可得到答案.【詳解】如圖,設,則,由題意,即,化簡得,解得(負值舍去).故選:C.【點晴】本題主要考查正四棱錐的概念及其有關計算,考查學生的數學計算能力,是一道容易題.
9.【2020年新課標1卷理科】已知為球的球面上的三個點,⊙為的外接圓,若⊙的面積為,,則球的表面積為(
)A. B. C. D.【答案】A【解析】【分析】由已知可得等邊的外接圓半徑,進而求出其邊長,得出的值,根據球的截面性質,求出球的半徑,即可得出結論.【詳解】設圓半徑為,球的半徑為,依題意,得,為等邊三角形,由正弦定理可得,,根據球的截面性質平面,,球的表面積.故選:A【點睛】本題考查球的表面積,應用球的截面性質是解題的關鍵,考查計算求解能力,屬于基礎題.
10.【2020年新課標2卷理科】如圖是一個多面體的三視圖,這個多面體某條棱的一個端點在正視圖中對應的點為,在俯視圖中對應的點為,則該端點在側視圖中對應的點為(
)A. B. C. D.【答案】A【解析】【分析】根據三視圖,畫出多面體立體圖形,即可求得點在側視圖中對應的點.【詳解】根據三視圖,畫出多面體立體圖形,上的點在正視圖中都對應點M,直線上的點在俯視圖中對應的點為N,∴在正視圖中對應,在俯視圖中對應的點是,線段,上的所有點在側試圖中都對應,∴點在側視圖中對應的點為.故選:A【點睛】本題主要考查了根據三視圖判斷點的位置,解題關鍵是掌握三視圖的基礎知識和根據三視圖能還原立體圖形的方法,考查了分析能力和空間想象,屬于基礎題.
11.【2020年新課標2卷理科】已知△ABC是面積為的等邊三角形,且其頂點都在球O的球面上.若球O的表面積為16π,則O到平面ABC的距離為(
)A. B. C.1 D.【答案】C【解析】【分析】根據球的表面積和的面積可求得球的半徑和外接圓半徑,由球的性質可知所求距離.【詳解】設球的半徑為,則,解得:.設外接圓半徑為,邊長為,是面積為的等邊三角形,,解得:,,球心到平面的距離.故選:C.【點睛】本題考查球的相關問題的求解,涉及到球的表面積公式和三角形面積公式的應用;解題關鍵是明確球的性質,即球心和三角形外接圓圓心的連線必垂直于三角形所在平面.
12.【2020年新課標3卷理科】下圖為某幾何體的三視圖,則該幾何體的表面積是(
)A.6+4 B.4+4 C.6+2 D.4+2【答案】C【解析】【分析】根據三視圖特征,在正方體中截取出符合題意的立體圖形,求出每個面的面積,即可求得其表面積.【詳解】根據三視圖特征,在正方體中截取出符合題意的立體圖形根據立體圖形可得:根據勾股定理可得:是邊長為的等邊三角形根據三角形面積公式可得:該幾何體的表面積是:.故選:C.【點睛】本題主要考查了根據三視圖求立體圖形的表面積問題,解題關鍵是掌握根據三視圖畫出立體圖形,考查了分析能力和空間想象能力,屬于基礎題.
13.【2020年新高考1卷(山東卷)】日晷是中國古代用來測定時間的儀器,利用與晷面垂直的晷針投射到晷面的影子來測定時間.把地球看成一個球(球心記為O),地球上一點A的緯度是指OA與地球赤道所在平面所成角,點A處的水平面是指過點A且與OA垂直的平面.在點A處放置一個日晷,若晷面與赤道所在平面平行,點A處的緯度為北緯40°,則晷針與點A處的水平面所成角為(
)
A.20° B.40°C.50° D.90°【答案】B【解析】【分析】畫出過球心和晷針所確定的平面截地球和晷面的截面圖,根據面面平行的性質定理和線面垂直的定義判定有關截線的關系,根據點處的緯度,計算出晷針與點處的水平面所成角.【詳解】畫出截面圖如下圖所示,其中是赤道所在平面的截線;是點處的水平面的截線,依題意可知;是晷針所在直線.是晷面的截線,依題意依題意,晷面和赤道平面平行,晷針與晷面垂直,根據平面平行的性質定理可得可知、根據線面垂直的定義可得..由于,所以,由于,所以,也即晷針與點處的水平面所成角為.故選:B【點睛】本小題主要考查中國古代數學文化,考查球體有關計算,涉及平面平行,線面垂直的性質,屬于中檔題.
14.【2019年新課標1卷理科】已知三棱錐PABC的四個頂點在球O的球面上,PA=PB=PC,△ABC是邊長為2的正三角形,E,F分別是PA,AB的中點,∠CEF=90°,則球O的體積為A. B. C. D.【答案】D【解析】【分析】先證得平面,再求得,從而得為正方體一部分,進而知正方體的體對角線即為球直徑,從而得解.【詳解】解法一:為邊長為2的等邊三角形,為正三棱錐,,又,分別為、中點,,,又,平面,平面,,為正方體一部分,,即,故選D.解法二:設,分別為中點,,且,為邊長為2的等邊三角形,又中余弦定理,作于,,為中點,,,,,又,兩兩垂直,,,,故選D.【點睛】本題考查學生空間想象能力,補體法解決外接球問題.可通過線面垂直定理,得到三棱兩兩互相垂直關系,快速得到側棱長,進而補體成正方體解決.
15.【2019年新課標2卷理科】設,為兩個平面,則的充要條件是A.內有無數條直線與平行B.內有兩條相交直線與平行C.,平行于同一條直線D.,垂直于同一平面【答案】B【解析】【分析】本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養,利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.
16.【2019年新課標3卷理科】如圖,點為正方形的中心,為正三角形,平面平面是線段的中點,則A.,且直線是相交直線B.,且直線是相交直線C.,且直線是異面直線D.,且直線是異面直線【答案】B【解析】利用垂直關系,再結合勾股定理進而解決問題.【詳解】如圖所示,作于,連接,過作于.連,平面平面.平面,平面,平面,與均為直角三角形.設正方形邊長為2,易知,.,故選B.【點睛】本題考查空間想象能力和計算能力,解答本題的關鍵是構造直角三角形.
17.【2018年新課標1卷理科】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從到的路徑中,最短路徑的長度為A. B. C. D.2【答案】B【解析】【分析】首先根據題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據平面上兩點間直線段最短,利用勾股定理,求得結果.【詳解】根據圓柱的三視圖以及其本身的特征,將圓柱的側面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關特征求得結果.
18.【2018年新課標1卷理科】已知正方體的棱長為1,每條棱所在直線與平面所成的角都相等,則截此正方體所得截面面積的最大值為A. B. C. D.【答案】A【解析】【分析】首先利用正方體的棱是3組每組有互相平行的4條棱,所以與12條棱所成角相等,只需與從同一個頂點出發的三條棱所成角相等即可,從而判斷出面的位置,截正方體所得的截面為一個正六邊形,且邊長是面的對角線的一半,應用面積公式求得結果.【詳解】根據相互平行的直線與平面所成的角是相等的,所以在正方體中,平面與線所成的角是相等的,所以平面與正方體的每條棱所在的直線所成角都是相等的,同理平面也滿足與正方體的每條棱所在的直線所成角都是相等,要求截面面積最大,則截面的位置為夾在兩個面與中間的,且過棱的中點的正六邊形,且邊長為,所以其面積為,故選A.點睛:該題考查的是有關平面被正方體所截得的截面多邊形的面積問題,首要任務是需要先確定截面的位置,之后需要從題的條件中找尋相關的字眼,從而得到其為過六條棱的中點的正六邊形,利用六邊形的面積的求法,應用相關的公式求得結果.
19.【2018年新課標2卷理科】在長方體中,,,則異面直線與所成角的余弦值為A. B. C. D.【答案】C【解析】【詳解】分析:先建立空間直角坐標系,設立各點坐標,利用向量數量積求向量夾角,再根據向量夾角與線線角相等或互補關系求結果.詳解:以D為坐標原點,DA,DC,DD1為x,y,z軸建立空間直角坐標系,則,所以,因為,所以異面直線與所成角的余弦值為,選C.點睛:利用法向量求解空間線面角的關鍵在于“四破”:第一,破“建系關”,構建恰當的空間直角坐標系;第二,破“求坐標關”,準確求解相關點的坐標;第三,破“求法向量關”,求出平面的法向量;第四,破“應用公式關”.
20.【2018年新課標3卷理科】中國古建筑借助榫卯將木構件連接起來,構件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構件右邊的小長方體是榫頭.若如圖擺放的木構件與某一帶卯眼的木構件咬合成長方體,則咬合時帶卯眼的木構件的俯視圖可以是A. B.C. D.【答案】A【解析】【詳解】詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題.
21.【2018年新課標3卷理科】設是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為A. B. C. D.【答案】B【解析】【詳解】分析:作圖,D為MO與球的交點,點M為三角形ABC的中心,判斷出當平面時,三棱錐體積最大,然后進行計算可得.詳解:如圖所示,
點M為三角形ABC的中心,E為AC中點,當平面時,三棱錐體積最大此時,,點M為三角形ABC的中心中,有故選B.點睛:本題主要考查三棱錐的外接球,考查了勾股定理,三角形的面積公式和三棱錐的體積公式,判斷出當平面時,三棱錐體積最大很關鍵,由M為三角形ABC的重心,計算得到,再由勾股定理得到OM,進而得到結果,屬于較難題型.
22.【2022年新高考1卷】已知正方體ABCD-A1B1C1DA.直線BC1與DA1所成的角為90° B.直線BC.直線BC1與平面BB1D1D所成的角為45°【答案】ABD【解析】【分析】數形結合,依次對所給選項進行判斷即可.【詳解】如圖,連接B1C、BC1,因為DA1//B1因為四邊形BB1C1C為正方形,則B1C⊥BC1連接A1C,因為A1B1⊥平面BB因為B1C⊥BC1,A1又A1C?平面A1B1連接A1C1,設A因為BB1⊥平面A1B1C因為C1O⊥B1D1,所以∠C1BO為直線B設正方體棱長為1,則C1O=22,所以,直線BC1與平面BB1D因為C1C⊥平面ABCD,所以∠C1BC為直線BC1與平面故選:ABD
23.【2022年新高考2卷】如圖,四邊形ABCD為正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB,記三棱錐E-ACD,F-ABC,F-ACE的體積分別為V1,VA.V3=2VC.V3=V【答案】CD【解析】【分析】直接由體積公式計算V1,V2,連接BD交AC于點M,連接EM,FM,由V【詳解】設AB=ED=2FB=2a,因為ED⊥平面ABCD,FB∥ED,則V1V2=13?FB?S△ABC=13?a?又ED⊥平面ABCD,AC?平面ABCD,則ED⊥AC,又ED∩BD=D,ED,BD?平面BDEF,則AC⊥平面BDEF,又BM=DM=12BD=2a,過F作FG⊥DE于G則EM=2a2+EM2+FM2=EF則V3=VA-EFM+VC-EFM=13AC?S△EFM=2a3故選:CD.
24.【2021年新高考1卷】在正三棱柱中,,點滿足,其中,,則(
)A.當時,的周長為定值B.當時,三棱錐的體積為定值C.當時,有且僅有一個點,使得D.當時,有且僅有一個點,使得平面【答案】BD【解析】【分析】對于A,由于等價向量關系,聯系到一個三角形內,進而確定點的坐標;對于B,將點的運動軌跡考慮到一個三角形內,確定路線,進而考慮體積是否為定值;對于C,考慮借助向量的平移將點軌跡確定,進而考慮建立合適的直角坐標系來求解點的個數;對于D,考慮借助向量的平移將點軌跡確定,進而考慮建立合適的直角坐標系來求解點的個數.【詳解】易知,點在矩形內部(含邊界).對于A,當時,,即此時線段,周長不是定值,故A錯誤;對于B,當時,,故此時點軌跡為線段,而,平面,則有到平面的距離為定值,所以其體積為定值,故B正確.對于C,當時,,取,中點分別為,,則,所以點軌跡為線段,不妨建系解決,建立空間直角坐標系如圖,,,,則,,,所以或.故均滿足,故C錯誤;對于D,當時,,取,中點為.,所以點軌跡為線段.設,因為,所以,,所以,此時與重合,故D正確.故選:BD.【點睛】本題主要考查向量的等價替換,關鍵之處在于所求點的坐標放在三角形內.
25.【2021年新高考2卷】如圖,在正方體中,O為底面的中心,P為所在棱的中點,M,N為正方體的頂點.則滿足的是(
)A. B.C. D.【答案】BC【解析】【分析】根據線面垂直的判定定理可得BC的正誤,平移直線構造所考慮的線線角后可判斷AD的正誤.【詳解】設正方體的棱長為,對于A,如圖(1)所示,連接,則,故(或其補角)為異面直線所成的角,在直角三角形,,,故,故不成立,故A錯誤.對于B,如圖(2)所示,取的中點為,連接,,則,,由正方體可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正確.對于C,如圖(3),連接,則,由B的判斷可得,故,故C正確.對于D,如圖(4),取的中點,的中點,連接,則,因為,故,故,所以或其補角為異面直線所成的角,因為正方體的棱長為2,故,,,,故不是直角,故不垂直,故D錯誤.故選:BC.
26.【2020年新課標3卷理科】已知圓錐的底面半徑為1,母線長為3,則該圓錐內半徑最大的球的體積為_________.【答案】【解析】【分析】將原問題轉化為求解圓錐內切球的問題,然后結合截面確定其半徑即可確定體積的值.【詳解】易知半徑最大球為圓錐的內切球,球與圓錐內切時的軸截面如圖所示,其中,且點M為BC邊上的中點,設內切圓的圓心為,由于,故,設內切圓半徑為,則:,解得:,其體積:.故答案為:.【點睛】與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.
27.【2020年新高考1卷(山東卷)】已知直四棱柱ABCD–A1B1C1D1的棱長均為2,∠BAD=60°.以為球心,為半徑的球面與側面BCC1B1的交線長為________.【答案】.【解析】【分析】根據已知條件易得,側面,可得側面與球面的交線上的點到的距離為,可得側面與球面的交線是扇形的弧,再根據弧長公式可求得結果.【詳解】如圖:取的中點為,的中點為,的中點為,因為60°,直四棱柱的棱長均為2,所以△為等邊三角形,所以,,又四棱柱為直四棱柱,所以平面,所以,因為,所以側面,設為側面與球面的交線上的點,則,因為球的半徑為,,所以,所以側面與球面的交線上的點到的距離為,因為,所以側面與球面的交線是扇形的弧,因為,所以,所以根據弧長公式可得.故答案為:.【點睛】本題考查了直棱柱的結構特征,考查了直線與平面垂直的判定,考查了立體幾何中的軌跡問題,考查了扇形中的弧長公式,屬于中檔題.
28.【2020年新高考2卷(海南卷)】已知正方體ABCDA1B1C1D1的棱長為2,M、N分別為BB1、AB的中點,則三棱錐ANMD1的體積為____________【答案】【解析】【分析】利用計算即可.【詳解】因為正方體ABCDA1B1C1D1的棱長為2,M、N分別為BB1、AB的中點所以故答案為:【點睛】在求解三棱錐的體積時,要注意觀察圖形的特點,看把哪個當成頂點好計算一些.
29.【2019年新課標2卷理科】中國有悠久
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 園藝師思維方式轉變試題及答案
- 重點突破2024年農藝師考試的難點與重難點 反思試題及答案
- 2024年園藝師考試數字化管理實踐試題及答案
- 開發面試題及答案大全
- 孝感農信社面試題及答案
- 學生考試的測試題及答案
- 2024年農藝師考試研究計劃試題及答案
- 企業聘用員工合同樣本
- 產品加盟協議合同樣本
- 圍棋3段測試題及答案
- 提高型鋼混凝土梁柱節點施工合格率
- 計算機系畢業論文
- JJG 814-2015自動電位滴定儀
- 部編版二年級下冊語文課件小企鵝心靈成長故事
- FZ/T 07019-2021針織印染面料單位產品能源消耗限額
- 初中生職業生涯規劃課件兩篇
- 低利率時代家庭財富管理課件
- 北京七年級下學期生物期中考試試卷
- 拖欠房租起訴書【5篇】
- 護理人員儀容儀表及行為規范
- 第六章廣播電視的傳播符號
評論
0/150
提交評論