




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年上海市徐匯區市級名校高考模擬信息考試數學試題(五)請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.2.已知復數滿足,(為虛數單位),則()A. B. C. D.33.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.64.設復數z=,則|z|=()A. B. C. D.5.根據最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關6.已知為虛數單位,若復數滿足,則()A. B. C. D.7.已知全集,集合,則()A. B. C. D.8.復數的實部與虛部相等,其中為虛部單位,則實數()A.3 B. C. D.9.若實數滿足的約束條件,則的取值范圍是()A. B. C. D.10.設為銳角,若,則的值為()A. B. C. D.11.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.12.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.14.某地區連續5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數據的標準差為_______.15.展開式中的系數的和大于8而小于32,則______.16.函數的最小正周期為________;若函數在區間上單調遞增,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態度,在普通行人中隨機選取了200人進行調查,當不處罰時,有80人會闖紅燈,處罰時,得到如表數據:處罰金額(單位:元)5101520會闖紅燈的人數50402010若用表中數據所得頻率代替概率.(1)當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其他市民.現對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?18.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,且過點.為橢圓的右焦點,為橢圓上關于原點對稱的兩點,連接分別交橢圓于兩點.⑴求橢圓的標準方程;⑵若,求的值;⑶設直線,的斜率分別為,,是否存在實數,使得,若存在,求出的值;若不存在,請說明理由.19.(12分)已知函數.(1)若,求證:.(2)討論函數的極值;(3)是否存在實數,使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.20.(12分)某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當時,,求此時的值;(2)設,且.(i)試將表示為的函數,并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.21.(12分)橢圓:的離心率為,點為橢圓上的一點.(1)求橢圓的標準方程;(2)若斜率為的直線過點,且與橢圓交于兩點,為橢圓的下頂點,求證:對于任意的實數,直線的斜率之積為定值.22.(10分)已知函數,記不等式的解集為.(1)求;(2)設,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.2.A【解析】,故,故選A.3.B【解析】
由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.4.D【解析】
先用復數的除法運算將復數化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點睛】本題考查復數的基本概念和基本運算,屬于基礎題.5.D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數據中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.6.A【解析】分析:題設中復數滿足的等式可以化為,利用復數的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數的四則運算和復數概念中的共軛復數,屬于基礎題.7.D【解析】
根據函數定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數定義域的求解,屬于基礎題.8.B【解析】
利用乘法運算化簡復數即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復數的概念及復數的乘法運算,考查學生的基本計算能力,是一道容易題.9.B【解析】
根據所給不等式組,畫出不等式表示的可行域,將目標函數化為直線方程,平移后即可確定取值范圍.【詳解】實數滿足的約束條件,畫出可行域如下圖所示:將線性目標函數化為,則將平移,平移后結合圖像可知,當經過原點時截距最小,;當經過時,截距最大值,,所以線性目標函數的取值范圍為,故選:B.【點睛】本題考查了線性規劃的簡單應用,線性目標函數取值范圍的求法,屬于基礎題.10.D【解析】
用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯系.11.B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.12.A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數據求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點睛】本題考查幾何體與三視圖的對應關系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關鍵是準確理解幾何體的定義,真正把握幾何體的結構特征,可以根據條件構建幾何模型,在幾何模型中進行判斷.14.【解析】
先求出這組數據的平均數,再求出這組數據的方差,由此能求出該組數據的標準差.【詳解】解:某地區連續5天的最低氣溫(單位:依次為8,,,0,2,平均數為:,該組數據的方差為:,該組數據的標準差為1.故答案為:1.【點睛】本題考查一組數據據的標準差的求法,考查平均數、方差、標準差的定義等基礎知識,考查運算求解能力,屬于基礎題.15.4【解析】
由題意可得項的系數與二項式系數是相等的,利用題意,得出不等式組,求得結果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關二項式定理的問題,涉及到的知識點有展開式中項的系數和,屬于基礎題目.16.【解析】
直接計算得到答案,根據題意得到,,解得答案.【詳解】,故,當時,,故,解得.故答案為:;.【點睛】本題考查了三角函數的周期和單調性,意在考查學生對于三角函數知識的綜合應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)降低(2)【解析】
(1)計算出罰金定為10元時行人闖紅燈的概率,和不進行處罰時行人闖紅燈的概率,求解即可;(2)闖紅燈的市民有80人,其中類市民和類市民各有40人,根據分層抽樣法抽出4人依次排序,計算所求的概率值.【詳解】解:(1)當罰金定為10元時,行人闖紅燈的概率為;不進行處罰,行人闖紅燈的概率為;所以當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低;(2)由題可知,闖紅燈的市民有80人,類市民和類市民各有40人故分別從類市民和類市民各抽出兩人,4人依次排序記類市民中抽取的兩人對應的編號為,類市民中抽取的兩人編號為則4人依次排序分別為,,,,,,,,,,,,共有種前兩位均為類市民排序為,,有種,所以前兩位均為類市民的概率是.【點睛】本題主要考查了計算古典概型的概率,屬于中檔題.18.(1)(2)(3)【解析】試題分析:(1);(2)由橢圓對稱性,知,所以,此時直線方程為,故.(3)設,則,通過直線和橢圓方程,解得,,所以,即存在.試題解析:(1)設橢圓方程為,由題意知:解之得:,所以橢圓方程為:(2)若,由橢圓對稱性,知,所以,此時直線方程為,由,得,解得(舍去),故.(3)設,則,直線的方程為,代入橢圓方程,得,因為是該方程的一個解,所以點的橫坐標,又在直線上,所以,同理,點坐標為,,所以,即存在,使得.19.(1)證明見解析;(2)見解析;(3)存在,1.【解析】
(1),求出單調區間,進而求出,即可證明結論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點,若不恒成立,求出的解,即可求出結論;(3)令,可證恒成立,而,由(2)得,在為減函數,在上單調遞減,在都存在,不滿足,當時,設,且,只需求出在單調遞增時的取值范圍即可.【詳解】(1),,,當時,,當時,,∴,故.(2)由題知,,,①當時,,所以在上單調遞減,沒有極值;②當時,,得,當時,;當時,,所以在上單調遞減,在上單調遞增.故在處取得極小值,無極大值.(3)不妨令,設在恒成立,在單調遞增,,在恒成立,所以,當時,,由(2)知,當時,在上單調遞減,恒成立;所以不等式在上恒成立,只能.當時,,由(1)知在上單調遞減,所以,不滿足題意.當時,設,因為,所以,,即,所以在上單調遞增,又,所以時,恒成立,即恒成立,故存在,使得不等式在上恒成立,此時的最小值是1.【點睛】本題考查導數綜合應用,涉及到函數的單調性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數學計算能力,屬于較難題.20.(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據的最大值不小于可得關于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關系式為,.(ii)當觀賞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省石家莊市2025年高三十月月考物理試題試卷含解析
- 江西工程職業學院《視覺藝術形式構建》2023-2024學年第一學期期末試卷
- 2025年度工作匯報總結模板14
- 合肥市2025年高三下學期期末學業水平檢測試題物理試題含解析
- 安徽工商職業學院《中醫兒科學研究進展》2023-2024學年第二學期期末試卷
- 承德應用技術職業學院《醫學檢驗導論》2023-2024學年第二學期期末試卷
- 河北石油職業技術學院《經典導讀》2023-2024學年第二學期期末試卷
- 云南省昆明市中華小學2024-2025學年小升初易錯點數學檢測卷含解析
- 鄭州師范學院《生物技術實驗》2023-2024學年第二學期期末試卷
- 浙江師范大學行知學院《編譯原理》2023-2024學年第二學期期末試卷
- 2025年國家糧食和物資儲備局垂直管理系統事業單位招聘701歷年管理單位筆試遴選500模擬題附帶答案詳解
- 工程機械租賃服務方案及保障措施 (二)
- 市政道路工程施工安全教育
- 四川省雙流縣彭鎮初級中學-主題班會-元旦互動游戲【課件】
- JJF(陜) 036-2020 單相機攝影測量系統校準規范
- 《AHA2023心肺復蘇與心血管急救指南》解讀課件
- 2024-2030年中國工程監理行業發展模式規劃分析報告版
- DB3705T 07-2023 專屬網格工委建設指南
- 【MOOC】考古發現與中國文化-浙江大學 中國大學慕課MOOC答案
- 《矩陣式組織結構》課件
- 【MOOC】公司財務管理:理論與案例-北京交通大學 中國大學慕課MOOC答案
評論
0/150
提交評論