北京十四中2025屆高二上數學期末監測試題含解析_第1頁
北京十四中2025屆高二上數學期末監測試題含解析_第2頁
北京十四中2025屆高二上數學期末監測試題含解析_第3頁
北京十四中2025屆高二上數學期末監測試題含解析_第4頁
北京十四中2025屆高二上數學期末監測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京十四中2025屆高二上數學期末監測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,”的否定是A, B.,C., D.,2.已知F為橢圓的右焦點,A為C的右頂點,B為C上的點,且垂直于x軸.若直線AB的斜率為,則橢圓C的離心率為()A. B.C. D.3.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設=,=,=,則=()A.++ B.+C.++ D.+4.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數據(單位:℃)制成如圖所示的莖葉圖(十位數字為莖,個位數字為葉).考慮以下結論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標準差小于乙地該月時的氣溫的標準差;④甲地該月時的氣溫的標準差大于乙地該月時的氣溫的標準差.其中根據莖葉圖能得到的統計結論的編號為()A.①③ B.①④C.②③ D.②④5.如下圖,邊長為2的正方體中,O是正方體的中心,M,N,T分別是棱BC,,的中點,下列說法錯誤的是()A. B.C. D.到平面MON的距離為16.函數的圖像大致是()A B.C. D.7.已知為等腰直角三角形的直角頂點,以為旋轉軸旋轉一周得到幾何體,是底面圓上的弦,為等邊三角形,則異面直線與所成角的余弦值為()A. B.C. D.8.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.9.已知下列四個命題,其中正確的是()A. B.C. D.10.如圖,過拋物線的焦點的直線依次交拋物線及準線于點,若且,則拋物線的方程為()A.B.C.D.11.設太陽光線垂直于平面,在陽光下任意轉動棱長為一個單位的立方體,則它在平面上的投影面積的最大值是()A.1 B.C. D.12.等差數列中,,,則()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列滿足,請寫出一個符合條件的通項公式______14.若與直線垂直,那么__________15.已知雙曲線,左右焦點分別為,若過右焦點的直線與以線段為直徑的圓相切,且與雙曲線在第二象限交于點,且軸,則雙曲線的離心率是_________.16.已知是定義在上的奇函數,當時,則當時___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,動點到點的距離等于點到直線的距離.(1)求動點的軌跡方程;(2)記動點的軌跡為曲線,過點的直線與曲線交于兩點,在軸上是否存在一點,使若存在,求出點的坐標;若不存在,請說明理由.18.(12分)如圖,在幾何體ABCEFG中,四邊形ACGE為平行四邊形,為等邊三角形,四邊形BCGF為梯形,H為線段BF的中點,,,,,,.(1)求證:平面平面BCGF;(2)求平面ABC與平面ACH夾角的余弦值.19.(12分)已知數列的前n項和為,且(1)求證:數列為等比數列;(2)記,求數列的前n項和為20.(12分)已知圓(1)若直線與圓C相交于A、B兩點,當弦長最短時,求直線l的方程;(2)若與圓C相外切且與y軸相切的圓的圓心記為D,求D點的軌跡方程21.(12分)已知正項數列的首項為,且滿足,(1)求證:數列為等比數列;(2)記,求數列的前n項和22.(10分)設橢圓:的左頂點為,右頂點為.已知橢圓的離心率為,且以線段為直徑的圓被直線所截得的弦長為.(1)求橢圓的標準方程;(2)設過點的直線與橢圓交于點,且點在第一象限,點關于軸對稱點為點,直線與直線交于點,若直線斜率大于,求直線的斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】特稱命題的否定是全稱命題,并將結論加以否定,所以命題的否定為:,考點:全稱命題與特稱命題2、D【解析】根據題意表示出點的坐標,再由直線AB的斜率為,列方程可求出橢圓的離心率【詳解】由題意得,,當時,,得,由題意可得點在第一象限,所以,因為直線AB的斜率為,所以,化簡得,所以,,得(舍去),或,所以離心率,故選:D3、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B4、B【解析】根據莖葉圖數據求出平均數及標準差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標準差為由莖葉圖知乙地該月時的平均氣溫為,標準差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標準差小于甲的標準差,故④正確,故正確的是①④,故選:B5、D【解析】建立空間直角坐標系,進而根據空間向量的坐標運算判斷A,B,C;對D,算出平面MON的法向量,進而求出向量在該法向量方向上投影的絕對值,即為所求距離.【詳解】如圖建立空間直角坐標系,則.對A,,則,則A正確;對B,,則,則B正確;對C,,則C正確;對D,設平面MON的法向量為,則,取z=1,得,,所以到平面MON的距離為,則D錯誤.故選:D.6、B【解析】由函數有兩個零點排除選項A,C;再借助導數探討函數的單調性與極值情況即可判斷作答.【詳解】由得,或,選項A,C不滿足;由求導得,當或時,,當時,,于是得在和上都單調遞增,在上單調遞減,在處取極大值,在處取極小值,D不滿足,B滿足.故選:B7、B【解析】設,過點作的平行線,與平行的半徑交于點,找出異面直線與所成角,然后通過解三角形可得出所求角的余弦值.【詳解】設,過點作的平行線,與平行的半徑交于點,則,,所以為異面直線與所成的角,在三角形中,,,所以.故選:B.【點睛】本題考查異面直線所成角余弦值的計算,一般通過平移直線的方法找到異面直線所成的角,考查計算能力,屬于中等題.8、B【解析】由公切線條數得兩圓外切,由此可得的關系,從而點在以原點為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結論【詳解】圓標準方程為,,半徑為,圓標準方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點在以原點為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B9、B【解析】根據基本初等函數的求導公式和求導法則即可求解判斷.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B.10、D【解析】如圖根據拋物線定義可知,進而推斷出的值,在直角三角形中求得,進而根據,利用比例線段的性質可求得,則拋物線方程可得.【詳解】如圖分別過點,作準線的垂線,分別交準線于點,設,則由已知得:,由定義得:,故在直角三角形中,,,,從而得,,求得,所以拋物線的方程為故選:D11、C【解析】確定正方體投影面積最大時,是投影面與平面AB'C平行,從而求出投影面積的最大值.【詳解】設正方體投影最大時,是投影面與平面AB'C平行,三個面的投影為兩個全等的菱形,其對角線為,即投影面上三條對角線構成邊長為的等邊三角形,如圖所示,所以投影面積為故選:C12、B【解析】根據給定條件利用等差數列性質直接計算作答.【詳解】在等差數列中,因,,而,于是得,解得,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3(答案不唯一)【解析】由已知條件結合等差數列的性質可得,則,從而可寫出數列的一個通項公式【詳解】因為是等差數列,且,所以,當公差為0時,;公差為1時,;…故答案為:3(答案為唯一)14、【解析】由兩條直線垂直知,得15、【解析】根據題意可得,進而可得,再根據,可得再根據雙曲線的定義,即可得到,進而求出結果.【詳解】如圖所示:設切點為,所以,又軸所以,所以,由,,所以又,所以故答案為:.16、【解析】當時,利用及求得函數的解析式.【詳解】當時,,由于函數是奇函數,故.【點睛】本小題主要考查已知函數的奇偶性以及軸一側的解析式,求另一側的解析式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設直線的方程為,利用韋達定理法結合條件可得,即得.【小問1詳解】因為動點到點的距離等于點到直線的距離,所以動點到點的距離和它到直線的距離相等,所以點的軌跡是以為焦點,以直線為準線的拋物線,設拋物線方程為,由,得,所以動點的軌跡方程為.【小問2詳解】由題意可知,直線的斜率不為0,故設直線的方程為,.聯立,得,恒成立,由韋達定理,得,,假設存在一點,滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所以解得,所以存在一點,滿足,點的坐標為.18、(1)證明見解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形內角和可知即,又因為,再根據面面垂直的判定定理,即可證明結果;(2)取BC中點O,由(1)得:平面BCGF,,以O為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,利用空間向量求二面角,即可求出結果.【小問1詳解】證明:(1)在中,由正弦定理知:解得因為,所以又因為,所以所以又因為,所以直線平面ABC又因為平面BCGF所以平面平面BCGF【小問2詳解】解:取BC中點O,連結OA,OH,由(1)得:平面BCGF,則以O為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系在中,則,,平面ABC的一個法向量為設平面ACH的一個法向量為因為,所以,取,則設平面APD與平面PDF夾角為,所以.19、(1)證明見解析;(2).【解析】(1)由已知得,當時,兩式作差整理得,根據等比數列的定義可得證;(2)由(1)求得,,再運用錯位相減法可求得答案.【小問1詳解】證明:因為,……①,所以當時,,當時……②,則①-②可得,所以,因為,所以數列是以2為首項,2為公比的等比數列【小問2詳解】解:由(1)知,即,因為所以,則……①,①得……②,①-②得,所以.20、(1)(2)【解析】(1)先求出直線過的定點,再根據弦長|AB|最短時,求解.(2)用直譯法求解【小問1詳解】直線即,所以直線過定點.當弦長|AB|最短時,因為直線PC的斜率所以此時直線的斜率所以當弦長|AB|最短時,求直線的方程為,即【小問2詳解】設,易知圓心D在軸上方,圓D半徑為因為圓與圓外切,所以即整理得點的軌跡方程為21、(1)證明見解析(2)【解析】(1)由遞推關系式化簡及等比數列的的定義證明即可;(2)根據裂項相消法求解即可得解.【小問1詳解】證明:由得,而且,則,即數列為首項,公比為的等比數列【小問2詳解】由上可知,所以,22、(1);(2).【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論