




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市昌平區昌平二中2025屆高一上數學期末學業水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知的三個頂點A,B,C及半面內的一點P,若,則點P與的位置關系是A.點P在內部 B.點P在外部C.點P在線段AC上 D.點P在直線AB上2.已知命題p:?x∈R,x2+2x<0,則A.?x∈R,x2+2x≤0 B.?x∈RC.?x∈R,x2+2x≥0 D.?x∈R3.如圖所示的是水平放置的三角形直觀圖,D′是△A′B′C′中B′C′邊上的一點,且D′離C′比D′離B′近,又A′D′∥y′軸,那么原△ABC的AB、AD、AC三條線段中A.最長的是AB,最短的是ACB.最長的是AC,最短的是ABC.最長的是AB,最短的是ADD.最長的是AD,最短的是AC4.已知函數,若關于x的方程恰有兩個不同的實數解,則實數m的取值范圍是()A. B.C. D.5.下列函數中與是同一函數的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)6.如圖是正方體或四面體,分別是所在棱的中點,則這四個點不共面的一個圖是()A. B.C. D.7.下列命題正確的是()A.若,則B.若,則C.若,則D.若,則8.已知函數,函數有三個零點,則取值范圍是A. B.C. D.9.已知函數的圖象與函數的圖象關于直線對稱,函數是奇函數,且當時,,則()A.-18 B.-12C.-8 D.-610.設函數y=,當x>0時,則y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值8二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數,若方程有4個不同的實數根,則的取值范圍是____12.已知,則函數的最大值為__________.13.已知圓錐的側面展開圖是一個半徑為,圓心角為的扇形,則此圓錐的高為________.14.設,則a,b,c的大小關系為_________.15.已知一組數據的平均數,方差,則另外一組數據的平均數為___________,方差為___________.16.在四邊形ABCD中,若,且,則的面積為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設非空集合P是一元一次方程的解集.若,,滿足,,求的值.18.已知的部分圖象如圖.(1)求函數的解析式;(2)求函數在上的單調增區間.19.已知角,且.(1)求的值;(2)求的值.20.如圖,在三棱錐中,平面平面為等邊三角形,且分別為的中點(1)求證:平面;(2)求證:平面平面;21.已知函數.(1)判斷函數的奇偶性,并證明;(2)設函數,若對任意的,總存在使得成立,求實數m的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由平面向量的加減運算得:,所以:,由向量共線得:即點P在線段AC上,得解【詳解】因為:,所以:,所以:,即點P在線段AC上,故選C.【點睛】本題考查了平面向量的加減運算及向量共線,屬簡單題.2、C【解析】根據特稱命題否定是全稱命題即可得解.【詳解】把存在改為任意,把結論否定,?p為?x∈R,x2故選:C3、C【解析】由斜二測畫法得到原三角形,結合其幾何特征易得答案.【詳解】由題意得到原△ABC的平面圖為:其中,AD⊥BC,BD>DC,∴AB>AC>AD,∴△ABC的AB、AD、AC三條線段中最長的是AB,最短的是AD故選C【點睛】本題考查了斜二測畫法,考查三角形中三條線段長的大小的比較,屬于基礎題4、D【解析】根據題意,函數與圖像有兩個交點,進而作出函數圖像,數形結合求解即可.【詳解】解:因為關于x的方程恰有兩個不同的實數解,所以函數與圖像有兩個交點,作出函數圖像,如圖,所以時,函數與圖像有兩個交點,所以實數m的取值范圍是故選:D5、C【解析】將5個函數的解析式化簡后,根據相等函數的判定方法分析,即可得出結果.【詳解】(1)與定義域相同,對應關系不同,不是同一函數;(2)與的定義域相同,對應關系一致,是同一函數;(3)與定義與相同,對應關系不同,不是同一函數;(4)與定義相同,對應關系一致,是同一函數;(5)與對應關系不同,不是同一函數;故選:C.6、D【解析】A,B,C選項都有,所以四點共面,D選項四點不共面.故選:D.7、D【解析】由不等式性質依次判斷各個選項即可.【詳解】對于A,若,由可得:,A錯誤;對于B,若,則,此時未必成立,B錯誤;對于C,當時,,C錯誤;對于D,當時,由不等式性質知:,D正確.故選:D.8、D【解析】根據題意做出函數在定義域內的圖像,將函數零點轉化成函數與函數圖像交點問題,結合圖形即可求解.【詳解】解:根據題意畫出函數的圖象,如圖所示:函數有三個零點,等價于函數與函數有三個交點,當直線位于直線與直線之間時,符合題意,由圖象可知:,,所以,故選:D.【點睛】根據函數零點的情況求參數有三種常用方法:(1)直接法:直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中畫出函數的圖象,然后數形結合求解.9、D【解析】首先根據題意得到,再根據的奇偶性求解即可.【詳解】由題知:,所以當時,,又因為函數是奇函數,所以.故選:D10、B【解析】由均值不等式可得答案.【詳解】由,當且僅當,即時等號成立.當時,函數的函數值趨于所以函數無最大值,有最小值4故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先畫出函數的圖象,把方程有4個不同的實數根轉化為函數的圖象與有四個不同的交點,結合對數函數和二次函數的性質,即可求解.【詳解】由題意,函數,要先畫出函數的圖象,如圖所示,又由方程有4個不同的實數根,即函數的圖象與有四個不同的交點,可得,且,則=,因為,則,所以.故答案為.【點睛】本題主要考查了函數與方程的綜合應用,其中解答中把方程有4個不同的實數根,轉化為兩個函數的有四個交點,結合對數函數與二次函數的圖象與性質求解是解答的關鍵,著重考查了數形結合思想,以及推理與運算能力,屬于中檔試題.12、【解析】換元,,化簡得到二次函數,根據二次函數性質得到最值.【詳解】設,,則,,故當,即時,函數有最大值為.故答案為:.【點睛】本題考查了指數型函數的最值,意在考查學生的計算能力,換元是解題的關鍵.13、【解析】設此圓的底面半徑為,高為,母線為,根據底面圓周長等于展開扇形的弧長,建立關系式解出,再根據勾股定理得,即得此圓錐高的值【詳解】設此圓的底面半徑為,高為,母線為,因為圓錐的側面展開圖是一個半徑為,圓心角為的扇形,所以,得,解之得,因此,此圓錐的高,故答案為:【點睛】本題給出圓錐的側面展開圖扇形的半徑和圓心角,求圓錐高的大小,著重考查了圓錐的定義與性質和旋轉體側面展開等知識,屬于基礎題.14、【解析】根據指數函數和對數函數的單調性可得到,,,從而可比較a,b,c的大小關系.【詳解】因為,,,所以.故答案為:.15、①.32②.135【解析】由平均數與方差的性質即可求解.【詳解】由題意,數據的平均數為,方差為.故答案為:;16、【解析】由向量的加減運算可得四邊形為平行四邊形,再由條件可得四邊形為邊長為4的菱形,由三角形的面積公式計算可得所求值【詳解】在四邊形中,,即為,即,可得四邊形為平行四邊形,又,可得四邊形為邊長為4的菱形,則的面積為正的面積,即為,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、答案見解析【解析】由題意可得,寫出P的所有可能,結合一元二次方程的根與系數的關系求解即可.【詳解】由于一元二次方程的解集非空,且,,所以,即滿足題意.當時,由韋達定理得,,此時:當時,由韋達定理得,,此時;當時,由韋達定理得,,此時.18、(1);(2)和.【解析】(1)由圖知:且可求,再由,結合已知求,寫出解析式即可.(2)由正弦函數的單調性,知上遞增,再結合給定區間,討論值確定其增區間.【詳解】(1)由圖知:且,∴.又,即,而,∴.綜上,.(2)∵,∴.當時,;當時,,又,∴函數在上的單調增區間為和.19、(1)(2)【解析】(1)依題意可得,再根據同角三角函數的基本關系將弦化切,即可得到的方程,解得,再根據的范圍求出;(2)根據同角三角函數的基本關系將弦化切,再代入計算可得;【小問1詳解】解:由,有,有,整理為,有,解得或.又由,有,可得;【小問2詳解】解:.20、(1)證明見解析;(2)證明見解析.【解析】(1)因為分別為的中點,所以,由線面平行的判定定理,即可得到平面;(2)因為為的中點,得到,利用面面垂直的性質定理可證得平面,由面面垂直的判定定理,即可得到平面平面【詳解】(1)因為、分別為、的中點,所以.又因為平面,所以平面;(2)因為,為的中點,所以,又因為平面平面,平面平面,且平面,所以平面,平面,平面平面.【點睛】本題考查線面位置關系的判定與證明,熟練掌握空間中線面位置關系的判定、幾何特征是解答的關鍵,其中垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 種子種苗國際貿易與市場分析考核試卷
- 紡織設備操作安全風險評估與控制考核試卷
- 窗簾行業的綠色服務模式創新實踐與案例分析考核試卷
- 維綸纖維在高端服裝面料中的應用考核試卷
- 紡織行業供應鏈管理策略考試考核試卷
- 木材采伐與可持續經營考核試卷
- 濾波器設計與實現考核試卷
- 電氣安裝施工環境保障措施考核試卷
- 礦山環境保護與污染防治考核試卷
- 山西省長治市三校2025年高三元月三診一模摸底診斷測試英語試題文試題含解析
- (四調)武漢市2025屆高中畢業生四月調研考試 語文試卷(含答案詳解)
- 廣州廣州市天河區華陽小學-畢業在即家校共話未來-六下期中家長會【課件】
- 公司事故隱患內部報告獎勵制度
- 大學生創新創業基礎(創新創業課程)完整全套教學課件
- 低鈉血癥鑒別診斷-杜斌PPT課件
- 《歷史文獻學》教學大綱
- 村田數控沖床安裝步驟_圖文
- 農村信用社助農金融服務終端管理辦法
- 語法填空題教案
- 白油安全技術說明書(共2頁)
- 北京市政府網站集約化建設策略的探討
評論
0/150
提交評論