2024屆江蘇省宿遷市沭陽縣華沖高中高三第二學期學業水平考試數學試題_第1頁
2024屆江蘇省宿遷市沭陽縣華沖高中高三第二學期學業水平考試數學試題_第2頁
2024屆江蘇省宿遷市沭陽縣華沖高中高三第二學期學業水平考試數學試題_第3頁
2024屆江蘇省宿遷市沭陽縣華沖高中高三第二學期學業水平考試數學試題_第4頁
2024屆江蘇省宿遷市沭陽縣華沖高中高三第二學期學業水平考試數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省宿遷市沭陽縣華沖高中高三第二學期學業水平考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,2.已知隨機變量服從正態分布,,()A. B. C. D.3.已知函數,若關于的不等式恰有1個整數解,則實數的最大值為()A.2 B.3 C.5 D.84.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.5.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.6.定義在R上的函數y=fx滿足fx≤2x-1A. B. C. D.7.數學中的數形結合,也可以組成世間萬物的絢麗畫面.一些優美的曲線是數學形象美、對稱美、和諧美的結合產物,曲線恰好是四葉玫瑰線.給出下列結論:①曲線C經過5個整點(即橫、縱坐標均為整數的點);②曲線C上任意一點到坐標原點O的距離都不超過2;③曲線C圍成區域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結論的序號是()A.①③ B.②④ C.①②③ D.②③④8.已知與函數和都相切,則不等式組所確定的平面區域在內的面積為()A. B. C. D.9.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.10.已知復數,其中為虛數單位,則()A. B. C.2 D.11.已知展開式的二項式系數和與展開式中常數項相等,則項系數為()A.10 B.32 C.40 D.8012.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.“北斗三號”衛星的運行軌道是以地心為一個焦點的橢圓.設地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,則“北斗三號”衛星運行軌道的離心率為__________.14.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.15.已知,則展開式中的系數為__16.公比為正數的等比數列的前項和為,若,,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)我國在貴州省平塘縣境內修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發現132顆優質的脈沖星候選體,其中有93顆已被確認為新發現的脈沖星,脈沖星是上世紀60年代天文學的四大發現之一,脈沖星就是正在快速自轉的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構觀測并統計了93顆已被確認為新發現的脈沖星的自轉周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發現的脈沖星中,自轉周期在2至10秒的大約有多少顆?(2)根據頻率分布直方圖,求新發現脈沖星自轉周期的平均值.18.(12分)已知函數()的圖象在處的切線為(為自然對數的底數)(1)求的值;(2)若,且對任意恒成立,求的最大值.19.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當時,有兩個零點,證明:.(參考數據:)20.(12分)已知函數.(1)當時,求函數的值域.(2)設函數,若,且的最小值為,求實數的取值范圍.21.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.22.(10分)設函數.(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設,取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設,延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.2、B【解析】

利用正態分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態分布密度曲線的對稱性求概率,屬于基礎題.3、D【解析】

畫出函數的圖象,利用一元二次不等式解法可得解集,再利用數形結合即可得出.【詳解】解:函數,如圖所示當時,,由于關于的不等式恰有1個整數解因此其整數解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數解當時,,至少有兩個整數解綜上,實數的最大值為故選:D【點睛】本題主要考查了根據函數零點的個數求參數范圍,屬于較難題.4、A【解析】

利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.5、B【解析】

由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.6、D【解析】

根據y=fx+1為奇函數,得到函數關于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數,即fx+1=-f-x+1,函數關于f1.5≤2故選:D.【點睛】本題考查了函數圖像的識別,確定函數關于1,0中心對稱是解題的關鍵.7、B【解析】

利用基本不等式得,可判斷②;和聯立解得可判斷①③;由圖可判斷④.【詳解】,解得(當且僅當時取等號),則②正確;將和聯立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【點睛】本題考查曲線與方程的應用,根據方程,判斷曲線的性質及結論,考查學生邏輯推理能力,是一道有一定難度的題.8、B【解析】

根據直線與和都相切,求得的值,由此畫出不等式組所表示的平面區域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數得,化簡得③.構造函數,,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區域在內的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據公共切線求參數,考查不等式組表示區域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數形結合的數學思想方法,考查分析思考與解決問題的能力,屬于難題.9、B【解析】

由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據重心的性質,即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質:或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數.10、D【解析】

把已知等式變形,然后利用數代數形式的乘除運算化簡,再由復數模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數代數形式的乘除運算,考查了復數模的求法,是基礎題.11、D【解析】

根據二項式定理通項公式可得常數項,然后二項式系數和,可得,最后依據,可得結果.【詳解】由題可知:當時,常數項為又展開式的二項式系數和為由所以當時,所以項系數為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.12、C【解析】

首先判斷出是周期為的周期函數,由此求得所求表達式的值.【詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

畫出圖形,結合橢圓的定義和題設條件,求得的值,即可求得橢圓的離心率,得到答案.【詳解】如圖所示,設橢圓的長半軸為,半焦距為,因為地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,可得,解得,所以橢圓的離心率為.故答案為:.【點睛】本題主要考查了橢圓的離心率的求解,其中解答中熟記橢圓的幾何性質,列出方程組,求得的值是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.14、【解析】

求出橢圓與雙曲線的離心率,根據離心率之積的關系,然后推出關系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點睛】本題考查了橢圓、雙曲線的幾何性質,掌握橢圓、雙曲線的離心率公式,屬于基礎題.15、1.【解析】

由題意求定積分得到的值,再根據乘方的意義,排列組合數的計算公式,求出展開式中的系數.【詳解】∵已知,則,

它表示4個因式的乘積.

故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.

故展開式中的系數.

故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數的計算公式,屬于中檔題.16、56【解析】

根據已知條件求等比數列的首項和公比,再代入等比數列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數列的通項公式和前項和公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)79顆;(2)5.5秒.【解析】

(1)利用各小矩形的面積和為1可得,進而得到脈沖星自轉周期在2至10秒的頻率,從而得到頻數;(2)平均值的估計值為各小矩形組中值與頻率的乘積的和得到.【詳解】(1)第一到第六組的頻率依次為0.1,0.2,0.3,0.2,,0.05,其和為1所以,,所以,自轉周期在2至10秒的大約有(顆).(2)新發現的脈沖星自轉周期平均值為(秒).故新發現的脈沖星自轉周期平均值為5.5秒.【點睛】本題考查頻率分布直方圖的應用,涉及到平均數的估計值等知識,是一道容易題.18、(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據函數的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據對任意恒成立,等價于對任意恒成立,構造,求出的單調性,由,,,,可得存在唯一的零點,使得,利用單調性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調遞增.又,,,,所以存在唯一的,使得,且當時,,時,.即在單調遞減,在上單調遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導數研究不等式恒成立或存在型問題,首先要構造函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造函數,直接把問題轉化為函數的最值問題.19、(1);(2)證明見解析.【解析】

(1)求出函數的定義域為,,分和兩種情況討論,分析函數的單調性,求出函數的最大值,即可得出關于實數的不等式,進而可求得實數的取值范圍;(2)利用導數分析出函數在上遞增,在上遞減,可得出,由,構造函數,證明出,進而得出,再由函數在區間上的單調性可證得結論.【詳解】(1)函數的定義域為,且.當時,對任意的,,此時函數在上為增函數,函數為最大值;當時,令,得.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,函數在處取得極大值,亦即最大值,即,解得.綜上所述,實數的取值范圍是;(2)當時,,定義域為,,當時,;當時,.所以,函數的單調遞增區間為,單調遞減區間為.由于函數有兩個零點、且,,,構造函數,其中,,令,,當時,,所以,函數在區間上單調遞減,則,則.所以,函數在區間上單調遞減,,,即,即,,且,而函數在上為減函數,所以,,因此,.【點睛】本題考查利用函數的最值求參數,同時也考查了利用導數證明函數不等式,利用所證不等式的結構構造新函數是解答的關鍵,考查推理能力與計算能力,屬于難題.20、(1);(2).【解析】

(1)令,求出的范圍,再由指數函數的單調性,即可求出結論;(2)對分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關系,求出的值,進而求出的取值關系.【詳解】(1)當時,,令,∵∴,而是增函數,∴,∴函數的值域是.(2)當時,則在上單調遞減,在上單調遞增,所以的最小值為,在上單調遞增,最小值為,而的最小值為,所以這種情況不可能.當時,則在上單調遞減且沒有最小值,在上單調遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實數的取值范圍是.【點睛】本題考查復合函數的值域與分段函數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論