




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省連云港市灌云縣2025屆數學高二上期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的圖象過點,令.記數列的前n項和為,則()A. B.C. D.2.若,則的值為()A.或 B.或C.1 D.-13.如圖所示,在平行六面體中,,,,點是的中點,點是上的點,且,則向量可表示為()A. B.C. D.4.已知函數,則等于()A.0 B.2C. D.5.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使6.已知直線、的方向向量分別為、,若,則等于()A.1 B.2C.0 D.37.某機構通過抽樣調查,利用列聯表和統計量研究患肺病是否與吸煙有關,計算得,經查對臨界值表知,,現給出四個結論,其中正確的是()A.因為,故有90%的把握認為“患肺病與吸煙有關"B.因為,故有95%把握認為“患肺病與吸煙有關”C.因為,故有90%的把握認為“患肺病與吸煙無關”D.因為,故有95%的把握認為“患肺病與吸煙無關”8.一直線過點,則此直線的傾斜角為()A.45° B.135°C.-45° D.-135°9.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進行核酸檢測,人員甲、乙均被檢測.設命題為“甲核酸檢測結果為陰性”,命題為“乙核酸檢測結果為陰性”,則命題“至少有一位人員核酸檢測結果不是陰性”可表示為()A. B.C. D.10.從某個角度觀察籃球(如圖甲),可以得到一個對稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標軸和雙曲線,若坐標軸和雙曲線與圓的交點將圓的周長八等分,且,則該雙曲線的離心率為()A. B.C.2 D.11.若橢圓的弦恰好被點平分,則所在的直線方程為()A. B.C. D.12.曲線y=x3+11在點P(1,12)處的切線與y軸交點的縱坐標是()A.﹣9 B.﹣3C.9 D.15二、填空題:本題共4小題,每小題5分,共20分。13.已知一個樣本數據為3,3,5,5,5,7,7,現在新加入一個3,一個5,一個7得到一個新樣本,則與原樣本數據相比,新樣本數據平均數______,方差______.(“變大”、“變小”、“不變”)14.已知為拋物線上任意一點,為拋物線的焦點,為平面內一定點,則的最小值為__________.15.已知,,且與的夾角為鈍角,則x的取值范圍是___.16.已知直線,,為拋物線上一點,則到這兩條直線距離之和的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.(1)求證:平面;(2)求二面角的正弦值;(3)設為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.18.(12分)已知數列為等差數列,滿足,.(1)求數列的通項公式;(2)求數列的前n項和,并求的最大值.19.(12分)已知命題:方程表示焦點在軸上的雙曲線,命題:關于的方程無實根(1)若命題為真命題,求實數的取值范圍;(2)若“”為假命題,"”為真命題,求實數的取值范圍20.(12分)已知數列是等差數列,數列是各項均為正數的等比數列,且,,.(1)求數列和的通項公式;(2)設,求數列的前項和.21.(12分)如圖,在正方體中,分別是,的中點.求證:(1)平面;(2)平面平面.22.(10分)已知橢圓的短軸長為2,左、右焦點分別為,,過且垂直于長軸的弦長為1(1)求橢圓C的標準方程;(2)若A,B為橢圓C上位于x軸同側的兩點,且,共線,求四邊形的面積的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由已知條件推導出,.由此利用裂項求和法能求出【詳解】解:由,可得,解得,則.∴,故選:【點睛】本題考查了函數的性質、數列的“裂項求和”,考查了推理能力與計算能力,屬于中檔題2、B【解析】求出函數的導數,由方程求解即可.【詳解】,,解得或,故選:B3、D【解析】根據空間向量加法和減法的運算法則,以及向量的數乘運算即可求解.【詳解】解:因為在平行六面體中,,,,點是的中點,點是上的點,且,所以,故選:D.4、D【解析】先通過誘導公式將函數化簡,進而求出導函數,然后算出答案.【詳解】由題意,,故選:D.5、B【解析】根據特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結論否定,所以“,使”的否定為“,有”,故選:B.6、C【解析】由可得出,利用空間向量數量積的坐標運算可得出關于實數的等式,由此可解得實數的值.【詳解】若,則,所以,所以,解得.故選:C7、A【解析】根據給定條件利用獨立性檢驗的知識直接判斷作答.【詳解】因,且,由臨界值表知,,,所以有90%的把握認為“患肺病與吸煙有關”,則A正確,C不正確;.因臨界值3.841>3.305,則不能確定有95%的把握認為“患肺病與吸煙有關”,也不能確定有95%的把握認為“患肺病與吸煙無關”,即B,D都不正確.故選:A8、A【解析】根據斜率公式求得直線的斜率,得到,即可求解.【詳解】設直線的傾斜角為,由斜率公式,可得,即,因為,所以,即此直線的傾斜角為.故選:A.9、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結果為陰性”,則命題為“甲核酸檢測結果不是陰性”;命題為“乙核酸檢測結果為陰性”,則命題為“乙核酸檢測結果不是陰性”.故命題“至少有一位人員核酸檢測結果不是陰性”可表示為.故選D.10、B【解析】設出雙曲線方程,把雙曲線上的點的坐標表示出來并代入到方程中,找到的關系即可求解.【詳解】以O為原點,AD所在直線為x軸建系,不妨設,則該雙曲線過點且,將點代入方程,故離心率為,故選:B【點睛】本題考查已知點在雙曲線上求雙曲線離心率的方法,屬于基礎題目11、D【解析】判斷點M與橢圓的位置關系,再借助點差法求出直線AB的斜率即可計算作答.【詳解】顯然點橢圓內,設點,依題意,,兩式相減得:,而弦恰好被點平分,即,則直線AB的斜率,直線AB:,即,所以所在的直線方程為.故選:D12、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.二、填空題:本題共4小題,每小題5分,共20分。13、①.不變②.變大【解析】通過計算平均數和方差來確定正確答案.【詳解】原樣本平均數為,原樣本方差為,新樣本平均數為,新樣本方差為.所以平均數不變,方差變大.故答案為:不變;變大14、3【解析】利用拋物線的定義,再結合圖形即求.【詳解】由題可得拋物線的準線為,設點在準線上的射影為,則根據拋物線的定義可知,∴要求取得最小值,即求取得最小,當三點共線時最小,為.故答案為:3.15、∪【解析】根據題意得出且與不共線,然后根據向量數量積的定義及向量共線的條件求出x的取值范圍.【詳解】∵與的夾角為鈍角,且與不共線,即,且,解得,且,∴x的取值范圍是∪.故答案為:∪.16、【解析】過作,垂足分別為,由直線為拋物線的準線,轉化,當三點共線時,取得最小值【詳解】過作,垂足分別為拋物線的焦點為直線為拋物線的準線由拋物線的定義,故,當三點共線時,取得最小值故最小值為點到直線的距離:故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】(1)由已知證得,,,以為坐標原點,建立如圖所示的空間直角坐標系,根據向量垂直的坐標表示和線面垂直的判定定理可得證;(2)根據二面角的空間向量求解方法可得答案;(3)設,表示點Q,再利用線面角的空間向量求解方法,建立方程解得,可得答案.【詳解】(1)因為平面,平面,平面,所以,,又因為,則以為坐標原點,建立如圖所示的空間直角坐標系,由已知可得,,,,,,所以,,,因為,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作為平面的法向量,設平面的法向量因為,.所以,即,不妨設,得.,又由圖示知二面角為銳角,所以二面角的正弦值為.(3)設,即,,所以,即,因為直線與平面所成角的正弦值為,所以,即,解得,即.【點睛】本題考查利用空間向量求線面垂直、線面角、二面角的求法,向量法求二面角的步驟:建、設、求、算、取:1、建:建立空間直角坐標系,以三條互相垂直的垂線的交點為原點;2、設:設所需點的坐標,并得出所需向量的坐標;3、求:求出兩個面的法向量;4、算:運用向量的數量積運算,求兩個法向量的夾角的余弦值;5、取:根據二面角的范圍和圖示得出的二面角是銳角還是鈍角,再取值.18、(1)(2),45【解析】(1)由等差數列的通項列出方程組,得出通項公式;(2)先得出,再由二次函數的性質得出最大值.【小問1詳解】由,解得,即【小問2詳解】,二次型函數開口向下,對稱軸為,則當或時,有最大值45.19、(1);(2).【解析】(1)由雙曲線標準方程的性質得,即可求m的范圍;(2)當q命題為真時,方程無實根,判別式小于零,求得m的范圍,再由復合命題的真假得和一真一假,列出不等式組運算可得解【小問1詳解】∵方程表示焦點在軸上的雙曲線,∴,解得【小問2詳解】若為真命題,則,解得,∵“”為假命題,”為真命題,∴一真一假當真假時,“”且“或”,則;當假真時,,則綜上所述,實數的取值范圍是20、(1),;(2),.【解析】(1)利用等差數列與等比數列的通項公式即可得出;(2)利用分組求和的方法結合等差數列與等比數列的前n項和公式即可得出.【詳解】(1)設等差數列的公差為,等比數列的公比為,且,依題意有,由,又,解得,∴,即,;(2)∵,∴前項和.∴前項和,.21、證明見解析【解析】(1)連接,根據線面平行的判定定理,即可證明結論成立;(2)連接,,先由線面平行的判定定理,得到平面,再由(1)的結果,結合面面平行的判定定理,即可證明結論成立.【詳解】(1)如圖,連接.∵四邊形是正方形,是的中點,∴是的中點.又∵是的中點,∴.∵平面,平面,∴平面.(2)連接,,∵四邊形是正方形,是的中點,∴是的中點.又∵是中點,∴.∵平面平面,∴平面.由(1)知平面,且,∴平面平面.【點睛】本題主要考查證明線面平行與面面平行,熟記線面平行的判定定理以及面面平行的判定定理即可,屬于常考題型.22、(1)(2)2【解析】(1)根據已知條件求得,由此求得橢圓的標準方程.(2)延長,交橢圓C于點.設出直線的方程并與橢圓方程聯立,化簡寫出根與系數關系,根據對稱性求得四邊形的面積的表達式,利用換元法,結合基本不等式求得四邊形的面積的最大值.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 紡織品的自動化檢驗設備考核試卷
- 外匯市場流動性分析考核試卷
- 紡織電氣自動化控制原理考核試卷
- 森林生態環境監測技術提升考核試卷
- 木材結構優化設計與力學性能考核試卷
- 皮裝飾制品生產過程中的質量控制考核試卷
- 染料進出口貿易分析與市場前景考核試卷
- 供應鏈數字雙胞胎實現端到端可視化考核試卷
- 西南石油大學《數據挖掘導論》2023-2024學年第二學期期末試卷
- 無錫太湖學院《醫學檢驗基本技術與儀器設備》2023-2024學年第一學期期末試卷
- 高校保密警示教育
- 預防狂犬病病知識
- 2025年初中語文名著閱讀《林海雪原》知識點總結及練習
- 西部計劃考試考題及答案
- 教師專業發展制度教師專業發展的保障制度
- 學校德育管理體系
- XX文化產業投資公司二零二五年度股東退股及文化創意協議
- 青年博物館文創產品消費研究:一個社會實踐分析視角
- 2025版學校學生食堂餐具清洗消毒服務合同2篇
- 跟著電影去旅游知到智慧樹章節測試課后答案2024年秋山東大學(威海)
- 《有機硅乳液防水劑》文本及編制說明
評論
0/150
提交評論