湖南省兩校聯考2025屆高二數學第一學期期末考試試題含解析_第1頁
湖南省兩校聯考2025屆高二數學第一學期期末考試試題含解析_第2頁
湖南省兩校聯考2025屆高二數學第一學期期末考試試題含解析_第3頁
湖南省兩校聯考2025屆高二數學第一學期期末考試試題含解析_第4頁
湖南省兩校聯考2025屆高二數學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省兩校聯考2025屆高二數學第一學期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標系下,點關于平面的對稱點的坐標為()A. B.C. D.2.盤子里有肉餡、素餡和豆沙餡的包子共個,從中隨機取出個,若是肉餡包子的概率為,不是豆沙餡包子的概率為,則素餡包子的個數為()A. B.C. D.3.已知定義在R上的函數滿足,且當時,,則下列結論中正確的是()A. B.C. D.4.已知點,分別在雙曲線的左右兩支上,且關于原點對稱,的左焦點為,直線與的左支相交于另一點,若,且,則的離心率為()A B.C. D.5.在區間內隨機取一個數,則方程表示焦點在軸上的橢圓的概率是A. B.C. D.6.若函數在區間上單調遞增,則實數的取值范圍是()A. B.C. D.7.函數y=的最大值為Ae-1 B.eC.e2 D.8.為了更好地研究雙曲線,某校高二年級的一位數學老師制作了一個如圖所示的雙曲線模型.已知該模型左、右兩側的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點與點,點與點均關于該雙曲線的對稱中心對稱,且,則()A. B.C. D.9.已知梯形ABCD中,,,且對角線交于點E,過點E作與AB所在直線的平行線l.若AB和CD所在直線的方程分別是與,則直線l與CD所在直線的距離為()A.1 B.2C.3 D.410.設等差數列的前項和為,若,則的值為()A.28 B.39C.56 D.11711.蟋蟀鳴叫可以說是大自然優美、和諧的音樂,殊不知蟋蟀鳴叫的頻率(每分鐘鳴叫的次數)與氣溫(單位:℃)存在著較強的線性相關關系.某地觀測人員根據如表的觀測數據,建立了關于的線性回歸方程,則下列說法不正確的是()(次數/分鐘)2030405060(℃)2527.52932.536A.的值是20B.變量,呈正相關關系C.若的值增加1,則的值約增加0.25D.當蟋蟀52次/分鳴叫時,該地當時的氣溫預報值為33.5℃12.已知斜三棱柱所有棱長均為2,,點、滿足,,則()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.i為虛數單位,復數______14.已知是橢圓的兩個焦點,分別是該橢圓的左頂點和上頂點,點在線段上,則的最小值為__________.15.數學中,多數方程不存在求根公式.因此求精確根非常困難,甚至不可能.從而尋找方程的近似根就顯得特別重要.例如牛頓迭代法就是求方程近似根的重要方法之一,其原理如下:假設是方程的根,選取作為的初始近似值,在點處作曲線的切線,則與軸交點的橫坐標稱為的一次近似值,在點處作曲線的切線.則與軸交點的橫坐標稱為的二次近似值.重復上述過程,用逐步逼近.若給定方程,取,則__________.16.已知直線與直線平行,則實數m的值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,在處有極值.(1)求、的值;(2)若,有個不同實根,求的范圍.18.(12分)已知函數,記f(x)的導數為f′(x).若曲線f(x)在點(1,f(1))處的切線斜率為﹣3,且x=2時y=f(x)有極值,(Ⅰ)求函數f(x)的解析式;(Ⅱ)求函數f(x)在[﹣1,1]上的最大值和最小值19.(12分)已知O為坐標原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標準方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標;若不存在,請說明理由20.(12分)在中,角的對邊分別為,已知,,且.(1)求角的大??;(2)若,面積為,試判斷的形狀,并說明理由.21.(12分)某市對排污水進行綜合治理,征收污水處理費,系統對各廠一個月內排出的污水量x噸收取的污水處理費y元,運行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數關系式;(2)求排放污水150噸的污水處理費用.22.(10分)已知,,其中(1)已知,若為真,求的取值范圍;(2)若是的充分不必要條件,求實數的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據空間坐標系中點的對稱關系求解【詳解】點關于平面的對稱點的坐標為,故選:C2、C【解析】計算出肉餡包子和豆沙餡包子的個數,即可求得素餡包子的個數.【詳解】由題意可知,肉餡包子的個數為,從中隨機取出個,不是豆沙餡包子的概率為,則該包子是豆沙餡包子的概率為,所以,豆沙餡包子的個數為,因此,素餡包子的個數為.故選:C.3、B【解析】由可得,利用導數判斷函數在上的單調性,由此比較函數值的大小確定正確選項.【詳解】∵∴,當時,,∴,故∴在內單調遞增,又,∴,所以故選:B4、D【解析】根據雙曲線的定義及,,應用勾股定理,可得關系,即可求解.【詳解】設雙曲線的右焦點為,連接,,,如圖:根據雙曲線的對稱性及可知,四邊形為矩形.設因為,所以,又,所以,,在和中,,①,②由②化簡可得,③把③代入①可得:,所以,故選:D【點睛】本題主要考查了雙曲線的定義,雙曲線的簡單幾何性質,勾股定理,屬于難題.5、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.6、A【解析】由函數在上單調遞增,可得,從而可求出實數的取值范圍【詳解】由,得,因為函數在區間上單調遞增,所以在區間上恒成立,即恒成立,因為,所以,所以,所以實數的取值范圍為,故選:A7、A【解析】,所以函數在上遞增,在上遞減,所以函數的最大值為時,y==故選A點睛:研究函數最值主要根據導數研究函數的單調性,找到最值,分式求導公式要記熟8、D【解析】依題意以雙曲線的對稱中心為坐標原點建系,設雙曲線的方程為,根據已知求得,點縱坐標代入計算即可求得橫坐標得出結果.【詳解】以雙曲線的對稱中心為坐標原點,建立平面直角坐標系,因為雙曲線的離心率為2,所以可設雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因為,所以的縱坐標為18.由,得,故.故選:D.9、B【解析】先求得直線AB和CD之間的距離,再求直線l與CD所在直線的距離即可解決.【詳解】梯形ABCD中,,,且對角線交于點E,則有△與△相似,相似比為,則,點E到CD所在直線的距離為AB和CD所在直線距離的又AB和CD所在直線的距離為,則直線l與CD所在直線的距離為2故選:B10、B【解析】由已知結合等差數列的求和公式及等差數列的性質即可求解.【詳解】因為等差數列中,,則.故選:B.11、D【解析】根據樣本中心過經過線性回歸方程、正相關的性質和線性回歸方程的意義進行判斷即可.【詳解】由題意,得,,則,故A正確;由線性回歸方程可知,,變量,呈正相關關系,故B正確;若的值增加1,則的值約增加0.25,故C正確;當時,,故D錯誤.故選:D.12、D【解析】以向量為基底向量,則,根據條件由向量的數量積的運算性質,兩邊平方可得答案.【詳解】以向量為基底向量,所以所以故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡求解即可.【詳解】故答案為:.14、【解析】由題可設,則,然后利用數量積坐標表示及二次函數的性質即得.【詳解】由題可得,,設,因為點P在線段AB上,所以,∴,∴當時,的最小值為.故答案為:.15、【解析】根據牛頓迭代法的知識求得.【詳解】構造函數,,切線的方程為,與軸交點的橫坐標為.,所以切線的方程為,與軸交點的橫坐標為.故答案為:16、【解析】由兩直線平行的判定可得求解即可,注意驗證是否出現直線重合的情況.【詳解】由題設,,解得,經檢驗滿足題設.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據題設條件可得,由此可解得與的值(2)依題意可知直線與函數的圖象有三個不同的交點,則的取值范圍介于極小值與極大值之間.【小問1詳解】因為函數,在處有極值,所以,即,解得,.【小問2詳解】由(1)知,,所以在上,,單調遞增,在上,,單調遞減,在上,,單調遞增,所以,,若有3個不同實根,則,所以的取值范圍為.18、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值為1,最小值為﹣3【解析】(Ⅰ)求導可得f′(x)的解析式,根據導數的幾何意義,可得k=f′(1)=-3,又在x=2處有極值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,討論f(x)在﹣1<x<0,0<x<1上的單調性,即可求得f(x)的極值,檢驗邊界值,即可得答案.【詳解】(Ⅰ)由題意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,當﹣1<x<0時,f′(x)>0,f(x)在(﹣1,0)是增函數,當0<x<1時,f′(x)<0,f(x)在(0,1)是減函數,所以f(x)的極大值為f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值為1,最小值為﹣319、(1);(2)存在;.【解析】(1)根據給定條件求出a,c,b即可作答.(2)聯立直線l與橢圓C的方程,利用斜率坐標公式并結合韋達定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標準方程為:【小問2詳解】依題意,設直線l方程為,由消去x并整理得,設,,則,,假定存在點,直線TM與TN的斜率分別為,,,要使為定值,必有,即,當時,,,當時,,,所以存在點,使得直線TM與TN的斜率之積為定值【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值20、(1);(2)為等邊三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,從而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;聯立①②可求得b=c=,從而可判斷△ABC的形狀【詳解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC為等邊三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC為等邊三角形【點睛】本題考查三角形形狀的判斷,著重考查正弦定理與余弦定理的應用,考查方程思想與運算求解能力,屬于中檔題21、(1);(2)1400(元).【解析】(1)根據已知條件即可容易求得函數關系式;(2)根據(1)中所求函數關系式,令,求得函數值即可.【小問1詳解】根據題意,得:當時,;當時,;當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論