2025屆海南省東方市八所中學高二上數學期末達標檢測試題含解析_第1頁
2025屆海南省東方市八所中學高二上數學期末達標檢測試題含解析_第2頁
2025屆海南省東方市八所中學高二上數學期末達標檢測試題含解析_第3頁
2025屆海南省東方市八所中學高二上數學期末達標檢測試題含解析_第4頁
2025屆海南省東方市八所中學高二上數學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆海南省東方市八所中學高二上數學期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線C:,則過拋物線C的焦點,弦長為整數且不超過2022的直線的條數是()A.4037 B.4044C.2019 D.20222.已知橢圓:的左、右焦點為,,上頂點為P,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構不成三角形3.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.44.函數的導函數為()A. B.C. D.5.已知向量,且與互相垂直,則k=()A. B.C. D.6.已知函數,則函數在區間上的最小值為()A. B.C. D.7.在的展開式中,的系數為()A. B.5C. D.108.如圖,,是平面上兩點,且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點.若點A在以,為焦點的橢圓M上,則()A.點B和C都在橢圓M上 B.點C和D都在橢圓M上C.點D和E都在橢圓M上 D.點E和B都在橢圓M上9.設等差數列的前n項和為.若,則()A.19 B.21C.23 D.3810.設變量,滿足約束條件則的最小值為()A.3 B.-3C.2 D.-211.已知“”的必要不充分條件是“或”,則實數的最小值為()A. B.C. D.12.已知拋物線的焦點為,拋物線的焦點為,點在上,且,則直線的斜率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在銳角中,角A,B,C的對邊分別為a,b,c.若,,,則的面積為_________14.直線與直線間的距離為___________.15.已知雙曲線C:的兩焦點分別為,,P為雙曲線C上一點,若,則=___________.16.(建三江)函數在處取得極小值,則=___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個等邊三角形都是相似的;(2):,.18.(12分)如圖,在半徑為6m的圓形O為圓心鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A,C在兩半徑上,現將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側面不計剪裁和拼接損耗,設矩形的邊長|AB|xm,圓柱的體積為Vm3.(1)寫出體積V關于x的函數關系式,并指出定義域;(2)當x為何值時,才能使做出的圓柱形罐子的體積V最大最大體積是多少?19.(12分)已知橢圓:的離心率為,且經過點.(1)求的方程;(2)設的右焦點為F,過F作兩條互相垂直的直線AB和DE,其中A,B,D,E都在橢圓上,求的取值范圍.20.(12分)已知是等差數列,是等比數列,且,,,.(1)求的通項公式;(2)設,求數列的前n項和.21.(12分)已知橢圓的焦點為,且該橢圓過點(1)求橢圓的標準方程;(2)若橢圓上的點滿足,求的值22.(10分)已知數列是等差數列,且,.(1)若數列中依次取出第2項,第4項,第6項,…,第項,按原來順序組成一個新數列,試求出數列的通項公式;(2)令,求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據已知條件,結合拋物線的性質,先求出過焦點的最短弦長,再結合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數且不超過2022的直線的條數是故選:A2、A【解析】根據題意求得,要判斷的形狀,只需要看是什么角即可,利用余弦定理判斷,從而可得結論.【詳解】解:由橢圓:,得,則,則,所以且為銳角,因為,所以銳角,所以為銳角三角形.故選:A.3、C【解析】根據雙曲線方程寫出漸近線方程,得出,進而可求出雙曲線的離心率.【詳解】因為雙曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.4、B【解析】利用復合函數求導法則即可求導.【詳解】,故選:B.5、C【解析】利用垂直的坐標表示列方程求解即可.【詳解】由與互相垂直得,解得故選:C.6、B【解析】根據已知條件求得以及,利用導數判斷函數的單調性,即可求得函數在區間上的最小值.【詳解】因為,故可得,則,又,令,解得,令,解得,故在單調遞減,在單調遞增,又,故在區間上的最小值為.故選:.7、C【解析】首先寫出展開式的通項公式,然后結合通項公式確定的系數即可.【詳解】展開式的通項公式為:,令可得:,則的系數為:.故選:C.【點睛】二項式定理的核心是通項公式,求解此類問題可以分兩步完成:第一步根據所給出的條件(特定項)和通項公式,建立方程來確定指數(求解時要注意二項式系數中n和r的隱含條件,即n,r均為非負整數,且n≥r,如常數項指數為零、有理項指數為整數等);第二步是根據所求的指數,再求所求解的項8、C【解析】根據橢圓的定義判斷即可求解.【詳解】因為,所以橢圓M中,因為,,,,所以D,E在橢圓M上.故選:C9、A【解析】由已知及等差數列的通項公式得到公差d,再利用前n項和公式計算即可.【詳解】設等差數列的公差為d,由已知,得,解得,所以.故選:A10、D【解析】轉化為,則最小即直線在軸上的截距最大,作出不等式組表示的可行域,數形結合即得解【詳解】轉化為,則最小即直線在軸上的截距最大作出不等式組表示的可行域如圖中陰影部分所示,作出直線,平移該直線,當直線經過時,在軸上的截距最大,最小,此時,故選:D11、A【解析】首先解不等式得到或,根據題意得到,再解不等式組即可.【詳解】,解得或,因為“”的必要不充分條件是“或”,所以.實數的最小值為.故選:A12、B【解析】根據拋物線的定義,求得p的值,即可得拋物線,的標準方程,求得拋物線的焦點坐標后,再根據斜率公式求解.【詳解】因為,所以,解得,所以直線的斜率為.故選B.【點睛】本題考查了拋物線的定義的應用,考查了拋物線的簡單性質,涉及了直線的斜率公式;拋物線上的點到焦點的距離等于其到準線的距離;解題過程中注意焦點的位置.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據求出,由向量數量積得到,使用余弦定理得到方程組,求出,利用面積公式求出結果.【詳解】因為,所以,即,而因為是銳角三角形,所以,所以,所以,因為,所以,即,因為,所以,整理得:①,其中,即,因為,所以,即,解得:②,把②代入①得:,解得:,則的面積為.故答案為:14、【解析】利用平行間的距離公式可求得結果.【詳解】由平行線間的距離公式可知,直線、間的距離為.故答案為:.15、18或2##2或18【解析】先由雙曲線的方程求出,再利用雙曲線的定義列方程求解即可【詳解】由,得,則,因為雙曲線C:的兩焦點分別為,,P為雙曲線C上一點,所以,即,所以或,因為,所以或都符合題意,故答案為:18或216、【解析】由,令,解得或,且時,;時,;時,,所以當時,函數取得極小值考點:導數在函數中的應用;極值的條件三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)存在兩個等邊三角形不是相似的,假命題(2),真命題【解析】根據全稱命題與存在性命題的關系,準確改寫,即可求解.【小問1詳解】解:命題“任意兩個等邊三角形都是相似的”是一個全稱命題根據全稱命題與存在性命題的關系,可得其否定“存在兩個等邊三角形不是相似的”,命題為假命題.【小問2詳解】解:根據全稱命題與存在性命題關系,可得:命題的否定為.因為,所以命題為真命題.18、(1),;(2)時,最大值為m3.【解析】(1)連接,在中,由,利用勾股定理可得,設圓柱底面半徑為,求出.利用(其中即可得出;(2)利用導數,求出V的單調性,即可得出結論【小問1詳解】連接,在中,,,設圓柱底面半徑為,則,即,,其中【小問2詳解】由及,得,列表如下:,0↗極大值↘∴當時,有極大值,也是最大值為m319、(1)(2)【解析】(1)根據橢圓的離心率為,及經過點建立等式可求解;(2)分斜率存在與不存在兩種情況進行討論,當斜率存在時,計算與后再求范圍即可.【小問1詳解】由題意知的離心率為,整理得,又因為經過點,所以,解得,所以,因此,的方程為.小問2詳解】由已知可得,當直線AB或DE有一條的斜率不存在時,可得,或,,此時有或.當AB和DE的斜率都存在時且不為0時,設直線:,直線:,,,,由得,所以,,所以,用替換可得.所以,綜上所述,的取值范圍為.20、(1)(2)【解析】(1)設是公差為d的等差數列,是公比為q的等比數列,運用通項公式可得,,進而得到所求通項公式;(2)求得,再由數列的求和方法:分組求和,運用等差數列和等比數列的求和公式,計算即可得到所求和.【小問1詳解】解:(1)設是公差為d的等差數列,是公比為q的等比數列,由,,可得,;即有,,則,則;【小問2詳解】解:,則數列的前n項和為.21、(1)(2)【解析】(1)利用兩點間距離公式求得P到橢圓的左右焦點的距離,然后根據橢圓的定義得到a的值,結合c的值,利用a,b,c的平方關系求得的值,再結合焦點位置,寫出橢圓的標準方程(2)利用向量的數量積,求得點滿足的條件,再結合橢圓的方程,解得的值【小問1詳解】解:設橢圓的長半軸長為a,短半軸長為b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論