




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省峨眉山市第七教育發展聯盟高2025屆數學高二上期末質量跟蹤監視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線過點,,則該直線的傾斜角是()A. B.C. D.2.設、分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為()A. B.C. D.3.圓與的公共弦長為()A. B.C. D.4.已知函數,當時,函數在,上均為增函數,則的取值范圍是A. B.C. D.5.已知一個圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側面積為()A. B.C. D.6.函數的導函數為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點 B.在單調遞增C.一定有最小值 D.不等式一定有解7.已知是定義在上的奇函數,對任意兩個不相等的正數、都有,記,,,則()A. B.C. D.8.已知點是拋物線上的動點,過點作圓的切線,切點為,則的最小值為()A. B.C. D.9.執行如圖所示的程序框圖,若輸入,則輸出的m的值是()A.-1 B.0C.0.1 D.110.不等式的解集為()A. B.C. D.11.如圖,在長方體中,,,則直線和夾角的余弦值為()A. B.C. D.12.若數列滿足,則的值為()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,求_____________.14.已知焦點在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標準方程為________15.如圖,某海輪以的速度航行,若海輪在點測得海面上油井在南偏東,向北航行后到達點,測得油井在南偏東,海輪改為沿北偏東的航向再行駛到達點,則,間的距離是________16.已知直線,拋物線上一動點到直線l的距離為d,則的最小值是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知O為坐標原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標準方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標;若不存在,請說明理由18.(12分)已知函數(1)當時,求函數的單調區間;(2)設,,求證:;(3)當時,恒成立,求的取值范圍19.(12分)已知是公差不為零的等差數列,,且,,成等比數列(1)求數列的通項公式;(2)設,求數列的前項和20.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(1)證明:(2)已知,求二面角的余弦值21.(12分)在銳角中,角的對邊分別為,滿足.(1)求;(2)若的面積為,求的值.22.(10分)某廠有4臺大型機器,在一個月中,一臺機器至多出現1次故障,出現故障時需1名工人進行維修,且每臺機器是否出現故障是相互獨立的,每臺機器出現故障的概率為(1)若出現故障的機器臺數為X,求X的分布列;(2)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現故障或出現故障時能及時維修,都產生5萬元的利潤,否則將不產生利潤.若該廠在雇傭維修工人時,要保證在任何時刻多臺機器同時出現故障能及時進行維修的概率不小于90%,雇傭幾名工人使該廠每月獲利最大?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據直線的斜率公式即可求得答案.【詳解】設該直線的傾斜角為,該直線的斜率,即.故選:C2、A【解析】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結果.【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,由橢圓和雙曲線的定義可得,所以,,設,因為,則,由勾股定理得,即,整理得,故.故選:A.3、D【解析】已知兩圓方程,可先讓兩圓方程作差,得到其公共弦的方程,然后再計算圓心到直線的距離,再結合勾股定理即可完成弦長的求解.【詳解】已知圓,圓,兩圓方程作差,得到其公共弦的方程為::,而圓心到直線的距離為,圓的半徑為,所以,所以.故選:D.4、A【解析】由,函數在上均為增函數,恒成立,,設,則,又設,則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導數研究函數的性質,簡單的線性規劃5、B【解析】設圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據體積公式計算可得,利用扇形的面積公式計算即可求得結果.【詳解】如圖,設圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側面積為.故選:B6、C【解析】根據圖象可得的符號,從而可得的單調區間,再對選項進行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當時,,當時,,當時,,當時,,可得在遞減,遞增;在遞減,在遞增,B錯誤,且知,所以存在極小值和,無極大值,A錯誤,同時無論是否存在,可得出一定有最小值,但是最小值不一定為負數,故C正確,D錯誤.故選:C.7、A【解析】由題,可得是定義在上的偶函數,且在上單調遞減,在上單調遞增,根據函數的單調性,即可判斷出的大小關系.【詳解】設,由題,得,即,所以函數在上單調遞減,因為是定義在R上的奇函數,所以是定義在上的偶函數,因此,,,即.故選:A【點睛】本題主要考查利用函數的單調性判斷大小的問題,其中涉及到構造函數的運用.8、C【解析】分析可知圓的圓心為拋物線的焦點,可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設點的坐標為,有,由圓的圓心坐標為,是拋物線的焦點坐標,有,由圓的幾何性質可得,又由,可得的最小值為故選:C.9、B【解析】計算后,根據判斷框直接判斷即可得解.【詳解】輸入,計算,判斷為否,計算,輸出.故選:B.10、A【解析】根據一元二次不等式的解法進行求解即可.【詳解】,故選:A.11、D【解析】如圖建立空間直角坐標系,分別求出的坐標,由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.12、C【解析】通過列舉得到數列具有周期性,,所以.詳解】,同理可得:,可得,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據導數的定義即可求解.【詳解】,所以,故答案為:.14、【解析】根據漸近線方程、焦距可得,,再根據雙曲線參數關系、焦點的位置寫出雙曲線標準方程.詳解】由題設,可知:,,∴由,可得,,又焦點在軸上,∴雙曲線的標準方程為.故答案為:.15、【解析】根據條件先由正弦定理求出的長,得出,求出的長,由勾股定理可得答案.【詳解】海輪向北航行后到達點,則由題意,在中,又則,由正弦定理可得:,即在中,,所以故答案為:16、##【解析】作直線l,拋物線準線且交y軸于A點,根據拋物線定義有,進而判斷目標式最小時的位置關系,結合點線距離公式求最小值.【詳解】如下圖示:若直線l,拋物線準線且交y軸于A點,則,,由拋物線定義知:,則,所以,要使目標式最小,即最小,當共線時,又,此時.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在;.【解析】(1)根據給定條件求出a,c,b即可作答.(2)聯立直線l與橢圓C的方程,利用斜率坐標公式并結合韋達定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標準方程為:【小問2詳解】依題意,設直線l方程為,由消去x并整理得,設,,則,,假定存在點,直線TM與TN的斜率分別為,,,要使為定值,必有,即,當時,,,當時,,,所以存在點,使得直線TM與TN的斜率之積為定值【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1)函數單調遞增區間為(0,1),單調遞減區間為(1,+∞)(2)證明見解析(3)[1,+∞)【解析】(1)對函數求導后,由導數的正負可求出函數的單調區間,(2)由(1)可得,令,則可得,然后利用累加法可證得結論,(3)由,故,然后分和討論的最大值與比較可得結果【小問1詳解】當時,(),則,由,解得;由,解得,因此函數單調遞增區間為(0,1),單調遞減區間為(1,+∞)【小問2詳解】由(1)知,當k=1時,,故令,則,即,所以【小問3詳解】由,故當時,因為,所以,因此恒成立,且的根至多一個,故在(0,1]上單調遞增,所以恒成立當時,令,解得當時,,則單調遞增;當時,,則單調遞減;于是,與恒成立相矛盾綜上,的取值范圍為[1,+∞)【點睛】關鍵點點睛:此題考查導數的綜合應用,考查利用導數求函數的單調區,利用導數求函數的最值,利用導數證明不等式,第(2)問解題的關鍵是利用(1)可得,從而得,然后令,得,最后累加可證得結論,考查數轉化思想,屬于較難題19、(1);(2)【解析】(1)由等差數列以及等比中項的公式代入聯立求解出,再利用等差數列的通項公式即可求得答案;(2)利用分組求和法,根據求和公式分別求出等差數列與等比數列的前項和再相加即可.【詳解】(1)由題意,,,即,聯立解得,所以數列的通項公式為;(2)由(1)得,,所以【點睛】關于數列前項和的求和方法:分組求和法:兩個數列等差或者等比數列相加時利用分組求和法計算;裂項相加法:數列的通項公式為分式時可考慮裂項相消法求和;錯位相減法:等差乘以等比數列的情況利用錯位相減法求和.20、(1)詳見解析(2)【解析】(1)利用垂直關系,轉化為證明線面垂直,即可證明線線垂直;(2)利用垂直關系,建立空間直角坐標系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問1詳解】如圖,取的中點,連結,,,因為,所以,因為平面平面,平面平面,所以平面,且平面,所以,又因為底面時菱形,所以,又因為點分別為的中點,所以,所以,且,所以平面,又因為平面,所以;【小問2詳解】由(1)可知,平面,連結,因為,,點為的中點,所以,則兩兩垂直,以點為坐標原點,建立空間直角坐標系,如圖所示:則,,,所以,,,,,,所以,,,設平面的法向量為,則,令,則,,故,設平面的法向量為,所以,因為二面角為銳二面角,所以二面角的余弦值為.21、(1);(2).【解析】(1)由條件可得,即,從而可得答案.(2)由條件結合三角形的面積公式可得,再由余弦定理得,配方可得答案.【詳解】(1)因為,所以,所以所以,因為所以,因為,所以(2)由面積公式得,于是,由余弦定理得,即,整理得,故.22、(1)答案見解析(2)雇傭3名【解析】(1)設出現故障的機器臺數為X,由題意知,即可由二項分布求解;(2)設該廠雇傭n名工人,n可取0、1、2、3、4,先求出保證在任何時刻多臺機器同時出現故障能及時進行維修的概率不小于90%需要至少3人,再分別計算3人,4人時的獲利即可得解.【小問1詳解】每臺機器運行是否出現故障看作一次實驗,在一次試驗中,機器出現故障的概率為,4臺機器相當于4次獨立試驗設出現故障的機器臺數為X,則,,,,,,則X的分布列為:X01234P【小問2詳解】設該廠雇傭n名工人,n可取0、1、2、3、4,設“
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東北秧歌的舞蹈風格特點
- 園林綠化施工合同典范
- 2025年廣東省農產品委托種植合同樣本
- 企業運營管理咨詢服務合同
- 鈷礦運輸合同
- 2025深圳市標準購房合同
- 2025年版簡易辦公室租賃合同模板下載
- 《匯業策略投資課件:探索盈利之道》
- 2025技術服務合同范本與協議
- 《手腳并用游戲》課件
- 教科版四年級下冊科學全冊教案
- 園林史課件-第7講-中國園林的成熟期(元明清初)和成熟后期(清中、末)-私家園林
- 商業攝影課件
- 第十套廣播體操教案
- 南京傳媒學院新聞傳播學院招聘網絡與新媒體教師模擬備考預測(自我提高共1000題含答案解析)檢測試卷
- GB/T 629-1997化學試劑氫氧化鈉
- 焦化廠生產工序及工藝流程圖
- optimact540技術參考手冊
- 第一章電力系統仿真軟件介紹課件
- 產品QC工程圖 (質量保證工程圖)Excel表格
- 電氣平行檢驗用表
評論
0/150
提交評論