




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省遂寧中學外國語實驗學校數學高二上期末統考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,平面,,,,Q是邊上的一動點,且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.2.圓心在x軸上且過點的圓與y軸相切,則該圓的方程是()A. B.C. D.3.設雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大4.第屆全運會于年月在陜西西安順利舉辦,其中水上項目在西安奧體中心游泳跳水館進行,為了應對比賽,大會組委會將對泳池進行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費用為元,設入水處的較短池壁長度為,且據估計較短的池壁維修費用與池壁長度成正比,且比例系數為,較長的池壁維修費用滿足代數式,則當泳池的維修費用最低時值為()A. B.C. D.5.如圖在中,,,在內作射線與邊交于點,則使得的概率是()A. B.C. D.6.南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數列與一般等差數列不同,前后兩項之差并不相等,而是逐項差數之差或者高次差相等.對這類高階等差數列的研究,在楊輝之后一般稱為“垛積術”.現有一個高階等差數列,其前7項分別為1,5,11,21,37,61,95,則該數列的第8項為()A.99 B.131C.139 D.1417.下列說法正確的個數有()(ⅰ)命題“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個 B.2個C.3個 D.4個8.如圖,已知多面體,其中是邊長為4的等邊三角形,四邊形是矩形,,平面平面,則點到平面的距離是()A. B.C. D.9.若直線的一個方向向量為,直線的一個方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°10.在等差數列中,,則()A.9 B.6C.3 D.111.已知,若與的展開式中的常數項相等,則()A.1 B.3C.6 D.912.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與直線的夾角大小等于_______14.已知圓錐的母線長為cm,其側面展開圖是一個半圓,則底面圓的半徑為____cm.15.已知直線與,若,則實數a的值為______16.設在中,角A、B、C所對的邊分別為a、b、c,從下列四個條件:①;②;③;④中選出三個條件,能使滿足所選條件的存在且唯一的所有c的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.18.(12分)已知數列{an}的前n項和為Sn,.(1)求數列{an}通項公式;(2)求數列的前n項和,求使不等式成立的最大整數m的值.19.(12分)已知函數,其中.(1)當時,求函數的單調性;(2)若對,不等式在上恒成立,求的取值范圍.20.(12分)已知等差數列滿足,(1)求的通項公式;(2)若等比數列的前n項和為,且,,,求滿足的n的最大值21.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)過點作圓C的切線,求切線的方程22.(10分)如圖①,直角梯形中,,,點,分別在,上,,,將四邊形沿折起,使得點,分別到達點,的位置,如圖②,平面平面,.(1)求證:平面平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由平面,直線與平面所成角的最大時,最小,也即最小,,由此可求得,從而得,得長,然后取外心,作,取H為的中點,使得,則易得,求出的長即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點,使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點睛】本題考查求球的表面積,解題關鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上2、A【解析】根據題意設出圓的方程,列式即可求出【詳解】依題可設圓的方程為,所以,解得即圓的方程是故選:A3、C【解析】根據雙曲線的性質結合離心率對雙曲線開口大小的影響即可得解.【詳解】解:對于A,越大,雙曲線開口越大,故A錯誤;對于B,越小,雙曲線開口越小,故B錯誤;對于C,由,越大,則越大,雙曲線開口越大,故C正確;對于D,越小,則越小,雙曲線開口越小,故D錯誤.故選:C.4、A【解析】根據題意得到泳池維修費用的的解析式,再利用導數求出最值即可【詳解】解:設泳池維修的總費用為元,則由題意得,則,令,解得,當時,;當時,,故當時,有最小值因此,當較短池壁為時,泳池的總維修費用最低故選A5、C【解析】由題意可得,根據三角形中“大邊對大角,小邊對小角”的性質,將轉化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎題6、D【解析】根據題中所給高階等差數列定義,找出其一般規律即可求解.【詳解】設該高階等差數列的第8項為,根據所給定義,用數列的后一項減去前一項得到一個數列,得到的數列也用后一項減去前一項得到一個數列,即得到了一個等差數列,如圖:由圖可得,則.故選:D7、B【解析】根據四種命題的結構特征可判斷(ⅰ)(ⅳ)的正誤,根據全稱命題的否定形式可判斷(ⅱ)的正誤,根據判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(ⅰ)錯誤.“,”的否定為“,使得”,故(ⅱ)正確,當時,,故有實根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯誤.故選:B8、C【解析】利用面面垂直性質結合已知尋找兩兩垂直的三條直線建立空間直角坐標系,用向量法可解.【詳解】取的中點O,連接OB,過O在平面ACDE面內作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是邊長為4的等邊三角形,四邊形ACDE是矩形,∴以O為原點,OA,OB,OF分別為x,y,z軸,建立如圖所示空間直角坐標系則,,,設平面ABD的單位法向量,,由解得取,則∴點C到平面ABD的距離.故選:C9、C【解析】直接由公式,計算兩直線的方向向量的夾角,進而得出直線與所成角的大小【詳解】因為,,所以,所以,所以直線與所成角的大小為故選:C10、A【解析】直接由等差中項得到結果.詳解】由得.故選:A.11、B【解析】根據二項展開式的通項公式即可求出【詳解】的展開式中的常數項為,而的展開式中的常數項為,所以,又,所以故選:B12、B【解析】由已知可設,則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設,則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設,則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標準方程及其簡單性質,考查數形結合思想、轉化與化歸的能力,很好的落實了直觀想象、邏輯推理等數學素養二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據直線的傾斜角可得答案.【詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.14、【解析】根據題意可知圓錐側面展開圖的半圓的半徑為cm,再根據底面圓的周長等于側面的弧長,即可求出結果.【詳解】設底面圓的半徑為,由于側面展開圖是一個半圓,又圓錐的母線長為cm,所以該半圓的半徑為cm,所以,所以(cm).故答案為:.15、【解析】由可得,從而可求出實數a的值【詳解】因為直線與,且,所以,解得,故答案:16、,##,【解析】由①②結合正弦定理可求出,但是角不唯一,故所選條件中不能同時有①②,只能是①③④或②③④,若選①③④,結合余弦定理可求,若選②③④,結合正弦定理即可求解【詳解】由①②結合正弦定理,所以,此時角不唯一,所以故所選條件中不能同時有①②,所以只能是①③④或②③④,若選①③④,即,,,由余弦定理可得,解得,若選②③④,即,,,因為,,所以,由正弦定理得,,故答案為:,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標系,則,,,,.設平面的法向量,則,即,取得到,,設直線與平面所成角為故.【點睛】本題考查了線面垂直,線面夾角,意在考查學生的空間想象能力和計算能力.18、(1);(2).【解析】(1)根據給定的遞推公式變形,再構造常數列求解作答.(2)利用(1)的結論求出,再利用裂項相消法求和,由單調性求出最大整數m值作答.【小問1詳解】依題意,,當時,,兩式相減得:,即,整理得:,于是得,所以數列{an}的通項公式是.【小問2詳解】由(1)得,,數列是遞增數列,因此,,于是有,則,不等式成立,則,,于是得,所以使不等式成立的最大整數m的值是505.【點睛】思路點睛:使用裂項法求和時,要注意正負項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質上造成正負相消是此法的根源與目的19、(1)的單調遞增區間為,,單調遞減區間為,(2)【解析】(1)求導可得,分析正負即得解;(2)轉化在上恒成立為,分析函數單調性,轉化為f(1)≤1f(-1)≤1,求解即可【小問1詳解】當時,令,解得,,當變化時,,的變化情況如下表:↘極小值↗極大值↘極小值↗所以的單調遞增區間為,,單調遞減區間為,【小問2詳解】由條件可知,從而恒成立當時,;當時,因此函數在上的最大值是與兩者中的較大者為使對任意的,不等式在上恒成立,當且僅當f(1)≤1f(-1)≤1即在上恒成立所以,因此滿足條件的的取值范圍是20、(1)(2)10【解析】(1)設等差數列公差為d,根據已知條件列關于和d的方程組即可求解;(2)設等比數列公比為q,根據已知條件求出和q,根據等比數列求和公式即可求出,再解關于n的不等式即可.【小問1詳解】由題意得,解得,∴【小問2詳解】∵,,又,∴,公比,∴,令,得,令,所以n的最大值為1021、(1)(2)或【解析】(1)由圓心在直線上,設,由點在圓上,列方程求,由此求出圓心坐標及半徑,確定圓的方程;(2)當切線的斜率存在時,設其方程為,由切線的性質列方程求,再檢驗直線是否為切線,由此確定答案.小問1詳解】因為圓C的圓心在直線上,設圓心的坐標為,圓C過點,,所以,即,解得,則圓心,半徑,所以圓的方程為;【小問2詳解】當切線的斜率存在時,設直線的方程為,即,因為直線和圓相切,得,解得,所以直線方程為,當切線的斜率不存在時,易知直線也是圓的切線,綜上,所求的切線方程為或22、(1)證明見解析(2)【解析】(1)根據,,,,易證,再根據平面平面,,得到平面,進而得到,再利用線面垂直的判定定理證明平面即可;(2)根據(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向建立空間直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 泌尿外科疾病護理
- 山東省棗莊市棗莊五中2025年高考歷史試題山東卷沖刺訓練解析含解析
- 平邑縣2024-2025學年三下數學期末學業質量監測模擬試題含解析
- 吉林省長春市外國語學校2024-2025學年高三下學期期末調研測試物理試題文試卷含解析
- 陽泉職業技術學院《施工組織與管理》2023-2024學年第二學期期末試卷
- 武漢城市學院《中小學美術教材研究》2023-2024學年第二學期期末試卷
- 西安文理學院《傷寒論選讀》2023-2024學年第二學期期末試卷
- 山東省泰安市泰前中學2025年初三下學期教學反饋檢測試題試數學試題含解析
- 重慶機電職業技術大學《漢語現代》2023-2024學年第二學期期末試卷
- 四川省成都市都江堰市2025年初三中考模擬試卷(二)生物試題含解析
- 2022-2023學年四川省巴中市巴州區川教版(三起)四年級下學期4月期中英語試卷(解析版)
- 互聯網信息審核員考試題庫大全-上(單選題匯總)
- 湖南省長沙市實驗小學小學語文五年級下冊期末試卷(含答案)
- 半導體物理與器件(第4版)尼曼課后答案【半導體物理與器件】【尼曼】課后小結與重要術語解
- 北師大版三年級數學下冊 (什么是面積)面積教學課件
- 第七講-信息技術與大數據倫理問題-副本
- 新版PFMEA自動判定
- 建筑工程材料測試題及參考答案
- 高考閱讀理解(main-idea)(課堂)課件
- 有限元分析研究匯報課件
- 醫院檢查報告單模板
評論
0/150
提交評論