山東省寧陽十一中2021-2022學年中考四模數學試題含解析_第1頁
山東省寧陽十一中2021-2022學年中考四模數學試題含解析_第2頁
山東省寧陽十一中2021-2022學年中考四模數學試題含解析_第3頁
山東省寧陽十一中2021-2022學年中考四模數學試題含解析_第4頁
山東省寧陽十一中2021-2022學年中考四模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省寧陽十一中2021-2022學年中考四模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,從邊長為a的正方形中去掉一個邊長為b的小正方形,然后將剩余部分剪后拼成一個長方形,上述操作能驗證的等式是()A. B.C. D.2.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.53.y=(m﹣1)x|m|+3m表示一次函數,則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣14.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.5.我國古代數學著作《孫子算經》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何。”大致意思是:“用一根繩子去量一根木條,繩長剩余4.5尺,將繩子對折再量木條,木條剩余一尺,問木條長多少尺”,設繩子長尺,木條長尺,根據題意所列方程組正確的是()A. B. C. D.6.八邊形的內角和為()A.180° B.360° C.1080° D.1440°7.一個多邊形內角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形8.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.259.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.1310.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.12.已知a+=2,求a2+=_____.13.若關于x、y的二元一次方程組的解是,則關于a、b的二元一次方程組的解是_______.14.若a是方程的根,則=_____.15.2017年12月31日晚,鄭東新區如意湖文化廣場舉行了“文化跨年夜、出彩鄭州人”的跨年慶祝活動,大學生小明和小剛都各自前往觀看了演出,而且他們兩人前往時選擇了以下三種交通工具中的一種:共享單車、公交、地鐵,則他們兩人選擇同一種交通工具前往觀看演出的概率為_____.16.如圖,AB為⊙O的直徑,C、D為⊙O上的點,.若∠CAB=40°,則∠CAD=_____.三、解答題(共8題,共72分)17.(8分)如圖,河的兩岸MN與PQ相互平行,點A,B是PQ上的兩點,C是MN上的點,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,測得∠CBQ=60°,求這條河的寬是多少米?(結果精確到0.1米,參考數據≈1.414,≈1.732)18.(8分)如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數的圖象上.求反比例函數的表達式;在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;若將△BOA繞點B按逆時針方向旋轉60°得到△BDE,直接寫出點E的坐標,并判斷點E是否在該反比例函數的圖象上,說明理由.19.(8分)已知四邊形ABCD是⊙O的內接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點F,延長DC,FB交于點P,如圖1.求證:PC=PB;(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側,如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.20.(8分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.21.(8分)如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(用含a的代數式表示);(2)若以AD為直徑的圓經過點C.①求拋物線的函數關系式;②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.22.(10分)如圖,矩形ABCD中,點E為BC上一點,DF⊥AE于點F,求證:∠AEB=∠CDF.23.(12分)嘉淇同學利用業余時間進行射擊訓練,一共射擊7次,經過統計,制成如圖12所示的折線統計圖.這組成績的眾數是;求這組成績的方差;若嘉淇再射擊一次(成績為整數環),得到這8次射擊成績的中位數恰好就是原來7次成績的中位數,求第8次的射擊成績的最大環數.24.某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)求A,B兩種型號的電風扇的銷售單價.若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?在(2)的條件下,超市銷售完這30臺電風扇能否實現利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進而可以證明平方差公式.【詳解】解:大正方形的面積-小正方形的面積=,

矩形的面積=,

故,

故選:A.【點睛】本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關鍵.2、A【解析】

根據直線外一點和直線上點的連線中,垂線段最短的性質,可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質,解題關鍵是利用垂線段的性質.3、B【解析】由一次函數的定義知,|m|=1且m-1≠0,所以m=-1,故選B.4、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.5、A【解析】

本題的等量關系是:繩長-木長=4.5;木長-×繩長=1,據此列方程組即可求解.【詳解】設繩子長x尺,木條長y尺,依題意有.故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關鍵是明確題意,列出相應的二元一次方程組.6、C【解析】試題分析:根據n邊形的內角和公式(n-2)×180o可得八邊形的內角和為(8-2)×180o=1080o,故答案選C.考點:n邊形的內角和公式.7、B【解析】

多邊形的外角和是310°,則內角和是2×310=720°.設這個多邊形是n邊形,內角和是(n﹣2)?180°,這樣就得到一個關于n的方程,從而求出邊數n的值.【詳解】設這個多邊形是n邊形,根據題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.【點睛】本題考查了多邊形的內角與外角,熟記內角和公式和外角和定理并列出方程是解題的關鍵.根據多邊形的內角和定理,求邊數的問題就可以轉化為解方程的問題來解決.8、C【解析】試題分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據等腰三角形的性質得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質;三角形三邊關系.9、A【解析】

由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.10、B【解析】(1)如圖1,當點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當點C在點B的右側時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據題目中所告訴的AB和BC的大小關系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.二、填空題(本大題共6個小題,每小題3分,共18分)11、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質、全等三角形的判定和性質等知識,坐標與圖形的性質,解題的關鍵是學會添加常用的輔助線,構造全等三角形解決問題,屬于中考常考題型.注意:距離都是非負數,而坐標可以是負數,在由距離求坐標時,需要加上恰當的符號.12、1【解析】試題分析:∵==4,∴=4-1=1.故答案為1.考點:完全平方公式.13、【解析】分析:利用關于x、y的二元一次方程組的解是可得m、n的數值,代入關于a、b的方程組即可求解,利用整體的思想找到兩個方程組的聯系再求解的方法更好.詳解:∵關于x、y的二元一次方程組的解是,∴將解代入方程組可得m=﹣1,n=2∴關于a、b的二元一次方程組整理為:解得:點睛:本題考查二元一次方程組的求解,重點是整體考慮的數學思想的理解運用在此題體現明顯.14、1【解析】

利用一元二次方程解的定義得到3a2-a=2,再把變形為,然后利用整體代入的方法計算.【詳解】∵a是方程的根,

∴3a2-a-2=0,

∴3a2-a=2,

∴==5-2×2=1.

故答案為:1.【點睛】此題考查一元二次方程的解,解題關鍵在于掌握能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.15、【解析】

首先根據題意畫樹狀圖,然后根據樹狀圖即可求得所有等可能的結果,最后用概率公式求解即可求得答案.【詳解】樹狀圖如圖所示,

∴一共有9種等可能的結果;

根據樹狀圖知,兩人選擇同一種交通工具前往觀看演出的有3種情況,

∴選擇同一種交通工具前往觀看演出的概率:,

故答案為.【點睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數與總情況數之比.16、25°【解析】

連接BC,BD,根據直徑所對的圓周角是直角,得∠ACB=90°,根據同弧或等弧所對的圓周角相等,得∠ABD=∠CBD,從而可得到∠BAD的度數.【詳解】如圖,連接BC,BD,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案為25°.【點睛】本題考查了圓周角定理及直徑所對的圓周角是直角的知識點,解題的關鍵是正確作出輔助線.三、解答題(共8題,共72分)17、17.3米.【解析】分析:過點C作于D,根據,得到,在中,解三角形即可得到河的寬度.詳解:過點C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:這條河的寬是米.點睛:考查解直角三角形的應用,作出輔助線,構造直角三角形是解題的關鍵.18、(1);(2)P(,0);(3)E(,﹣1),在.【解析】

(1)將點A(,1)代入,利用待定系數法即可求出反比例函數的表達式;(2)先由射影定理求出BC=3,那么B(,﹣3),計算求出S△AOB=××4=.則S△AOP=S△AOB=.設點P的坐標為(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根據旋轉的性質求出E點坐標為(﹣,﹣1),即可求解.【詳解】(1)∵點A(,1)在反比例函數的圖象上,∴k=×1=,∴反比例函數的表達式為;(2)∵A(,1),AB⊥x軸于點C,∴OC=,AC=1,由射影定理得=AC?BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.設點P的坐標為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負半軸上的點,∴m=﹣,∴點P的坐標為(,0);(3)點E在該反比例函數的圖象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點B按逆時針方向旋轉60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴點E在該反比例函數的圖象上.考點:待定系數法求反比例函數解析式;反比例函數系數k的幾何意義;坐標與圖形變化-旋轉.19、(1)詳見解析;(2)∠BDE=20°.【解析】

(1)根據已知條件易證BC∥DF,根據平行線的性質可得∠F=∠PBC;再利用同角的補角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據平行四邊形的性質可得BC=DH=1,在Rt△ABC中,用銳角三角函數求出∠ACB=60°,進而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據三角形外角的性質可得∠OAD=∠DOC=20°,最后根據圓周角定理及平行線的性質即可求解.【詳解】(1)如圖1,∵AC是⊙O的直徑,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四邊形BCDF是圓內接四邊形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如圖2,連接OD,∵AC是⊙O的直徑,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四邊形DHBC是平行四邊形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰△DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,設DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.【點睛】本題考查了圓內接四邊形的性質、圓周角定理、平行四邊形的判定與性質、等腰三角形的性質等知識點,解決第(2)問,作出輔助線,求得∠ODH=20°是解決本題的關鍵.20、(3)證明見解析;(3)AB=3.【解析】

(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據SAS推出△ACE≌△BCD即可;(3)求出AD=5,根據全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【詳解】證明:(3)如圖,∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,則∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD==5,∴AB=AD+BD=33+5=3.【點睛】本題考查了全等三角形的判定與性質,也考查了等腰直角三角形的性質和勾股定理的應用.考點:3.全等三角形的判定與性質;3.等腰直角三角形.21、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數的解析式進行配方即可得到頂點D的坐標.(2)①以AD為直徑的圓經過點C,即點C在以AD為直徑的圓的圓周上,依據圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標可得,而C、D的坐標可由a表達出來,在得出AC、CD、AD的長度表達式后,依據勾股定理列等式即可求出a的值.②將△OBE繞平面內某一點旋轉180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標關鍵是求出點M的坐標;首先根據①的函數解析式設出M點的坐標,然后根據題干條件:BF=2MF作為等量關系進行解答即可.③設⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設出點Q的坐標,然后用Q點縱坐標表達出QD、QB的長,根據上面的等式列方程即可求出點Q的坐標.詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內某一點旋轉180°得到△PMN,∴PM∥x軸,且PM=OB=1;設M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設⊙Q與直線CD的切點為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點Q的坐標為(1,)或(1,).點睛:此題主要考查了二次函數解析式的確定、旋轉圖形的性質、圓周角定理以及直線和圓的位置關系等重要知識點;后兩個小題較難,最后一題中,通過構建等腰直角三角形找出QD和⊙Q半徑間的數量關系是解題題目的關鍵.22、見解析.【解析】

利用矩形的性質結合平行線的性質得出∠CDF+∠ADF=90°,進而得出∠CDF=∠DAF,由AD∥BC,得出答案.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AD∥BC,∴∠CDF+∠ADF=90°,∵DF⊥AE于點F,∴∠DAF+∠ADF=90°,∴∠CDF=∠DAF.∵AD∥BC,∴∠DAF=∠AEB,∴∠AEB=∠CDF.【點睛】此題主要考查了矩形的性質以及平行線的性質,正確得出∠CDF=∠DAF是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論