




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇常州教學研究合作聯盟高考數學試題考前最后一卷預測卷(三)請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列滿足,(),則數列的通項公式()A. B. C. D.2.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.3.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.984.執行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.5.若表示不超過的最大整數(如,,),已知,,,則()A.2 B.5 C.7 D.86.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.7.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.48.已知等式成立,則()A.0 B.5 C.7 D.139.在平面直角坐標系中,若不等式組所表示的平面區域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.10.已知復數z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知是等差數列的前項和,若,設,則數列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.201712.計算等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.點在雙曲線的右支上,其左、右焦點分別為、,直線與以坐標原點為圓心、為半徑的圓相切于點,線段的垂直平分線恰好過點,則該雙曲線的漸近線的斜率為__________.14.設函數,當時,記最大值為,則的最小值為______.15.正四面體的各個點在平面同側,各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.16.在中,、的坐標分別為,,且滿足,為坐標原點,若點的坐標為,則的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數方程為(為參數).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.18.(12分)已知函數,.(1)若函數在上單調遞減,且函數在上單調遞增,求實數的值;(2)求證:(,且).19.(12分)在數列和等比數列中,,,.(1)求數列及的通項公式;(2)若,求數列的前n項和.20.(12分)已知公比為正數的等比數列的前項和為,且,.(1)求數列的通項公式;(2)設,求數列的前項和.21.(12分)已知函數,.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數,當時,討論零點的個數.22.(10分)已知在平面直角坐標系中,橢圓的焦點為為橢圓上任意一點,且.(1)求橢圓的標準方程;(2)若直線交橢圓于兩點,且滿足(分別為直線的斜率),求的面積為時直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
利用數列的遞推關系式,通過累加法求解即可.【詳解】數列滿足:,,可得以上各式相加可得:,故選:.本題考查數列的遞推關系式的應用,數列累加法以及通項公式的求法,考查計算能力.2.B【解析】
利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設拋物線的焦點為F,設點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.本題考查拋物線的定義、標準方程,以及簡單性質的應用,利用拋物線的定義是解題的關鍵.3.C【解析】
由題意,逐步分析循環中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.4.B【解析】
列出循環的每一步,進而可求得輸出的值.【詳解】根據程序框圖,執行循環前:,,,執行第一次循環時:,,所以:不成立.繼續進行循環,…,當,時,成立,,由于不成立,執行下一次循環,,,成立,,成立,輸出的的值為.故選:B.本題考查的知識要點:程序框圖的循環結構和條件結構的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.5.B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數列,則.故選:B.本題考查周期數列的判斷和取整函數的應用.6.D【解析】
如圖所示,過分別作于,于,利用和,聯立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據得到:,即,根據得到:,即,解得,,故.故選:.本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.7.A【解析】
根據題意依次計算得到答案.【詳解】根據題意知:,,故,,.故選:.本題考查了數列值的計算,意在考查學生的計算能力.8.D【解析】
根據等式和特征和所求代數式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D本題考查了二項式定理的應用,考查了特殊值代入法,考查了數學運算能力.9.B【解析】
依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區域,要使不等式組所表示的平面區域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題10.A【解析】
設,由得:,由復數相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.本題考查共軛復數的求法,考查對復數相等的理解,考查復數在復平面對應的點,考查運算能力,屬于常考題.11.B【解析】
根據題意計算,,,計算,,,得到答案.【詳解】是等差數列的前項和,若,故,,,,故,當時,,,,,當時,,故前項和最大.故選:.本題考查了數列和的最值問題,意在考查學生對于數列公式方法的綜合應用.12.A【解析】
利用誘導公式、特殊角的三角函數值,結合對數運算,求得所求表達式的值.【詳解】原式.故選:A本小題主要考查誘導公式,考查對數運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】如圖,是切點,是的中點,因為,所以,又,所以,,又,根據雙曲線的定義,有,即,兩邊平方并化簡得,所以,因此.14.【解析】
易知,設,,利用絕對值不等式的性質即可得解.【詳解】,設,,令,當時,,所以單調遞減令,當時,,所以單調遞增所以當時,,,則則,即故答案為:.本題考查函數最值的求法,考查絕對值不等式的性質,考查轉化思想及邏輯推理能力,屬于難題.15.【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,根據題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉化化歸的思想和空間想象,運算求解的能力,屬于難題,16.【解析】
由正弦定理可得點在曲線上,設,則,將代入可得,利用二次函數的性質可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設,則,,又,,因為,則,即的取值范圍為.故答案為:.本題考查雙曲線的定義,考查向量數量積的坐標運算,考查學生計算能力,有一定的綜合性,但難度不大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)();(2).【解析】
(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點且傾斜角為的直線,∴的極坐標方程為().(2)由得,∴,由得∴,∴.本題考查了參數方程,極坐標方程,意在考查學生的計算能力和應用能力.18.(1)1;(2)見解析【解析】
(1)分別求得與的導函數,由導函數與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數在上單調遞減,∴,即在上恒成立,∴,又∵函數在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數在上為減函數,在上為增函數,而,∴當時,,當時,.∴∴即,∴.本題考查了導數與函數單調性關系,放縮法在證明不等式中的應用,屬于難題.19.(1),(2)【解析】
(1)根據與可求得,再根據等比數列的基本量求解即可.(2)由(1)可得,再利用錯位相減求和即可.【詳解】解:(1)依題意,,設數列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.本題主要考查了等比數列的基本量求解以及錯位相減求和等.屬于中檔題.20.(1)(2)【解析】
(1)判斷公比不為1,運用等比數列的求和公式,解方程可得公比,進而得到所求通項公式;(2)求得,運用數列的錯位相減法求和,以及等比數列的求和公式,計算可得所求和.【詳解】解:(1)設公比為正數的等比數列的前項和為,且,,可得時,,不成立;當時,,即,解得(舍去),則;(2),前項和,,兩式相減可得,化簡可得.本題考查等比數列的通項公式和求和公式的運用,考查數列的錯位相減法求和,考查方程思想和運算能力,屬于中檔題.21.(1);(2)見解析.【解析】
(1)設切點坐標為,然后根據可解得實數的值;(2)令,,然后對實數進行分類討論,結合和的符號來確定函數的零點個數.【詳解】(1),,設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數為增函數;當時,,此時,函數為減函數.,.①當,即當時,函數有一個零點;②當,即當時,函數有兩個零點;③當,即當時,函數有三個零點;④當,即當時,函數有兩個零點;⑤當,即當時,函數只有一個零點.綜上所述,當或時,函數只有一個零點;當或時,函數有兩個零點;當時,函數有三個零點.本題考查了利用導數的幾何意義研究切線方程和利用導數研究函數的單調性與極值,關鍵是分類討論思想的應用,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 洗浴行業競爭格局演變分析考核試卷
- 油氣田開發工程案例分析與實踐考核試卷
- 二零二五版股東股份轉讓協議書書
- 投資入股的協議書二零二五年
- 二零二五存單質押貸款操作協議
- 二零二五質押合同模板
- 魯迅小說祝福主旨探究教案
- 經濟型酒店的在線評論分析與利用考核試卷
- 漁業冷鏈物流與保鮮技術考核試卷
- 企業安全生產操練卷子與答案
- 波紋鋼裝配式檢查井通用技術規范
- 財務支出預算表模板
- 心房顫動健康宣教
- 人力資源的5分鐘勞動法
- 充電樁工程施工組織設計施工組織
- DL-T 5850-2021 電氣裝置安裝工程 高壓電器施工及驗收規范
- 多層螺旋CT原理及臨床應用
- 小學語文五年下冊《習作:形形色色的人》說課稿(附教學反思、板書)課件
- 部編版二年級語文(下冊)期末復習教案+計劃2
- 軌道起重吊車安全操作規程
- 三年級培智生活數學暑假作業
評論
0/150
提交評論