河南省許昌長葛市2022-2023學年數學九年級第一學期期末學業水平測試模擬試題含解析_第1頁
河南省許昌長葛市2022-2023學年數學九年級第一學期期末學業水平測試模擬試題含解析_第2頁
河南省許昌長葛市2022-2023學年數學九年級第一學期期末學業水平測試模擬試題含解析_第3頁
河南省許昌長葛市2022-2023學年數學九年級第一學期期末學業水平測試模擬試題含解析_第4頁
河南省許昌長葛市2022-2023學年數學九年級第一學期期末學業水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,已知在ΔABC中,DE∥BC,則以下式子不正確的是()A. B. C. D.2.下列圖象能表示y是x的函數的是()A. B.C. D.3.下面是一位美術愛好者利用網格圖設計的幾個英文字母的圖形,你認為其中是中心對稱圖形,但不是軸對稱圖形的是A. B. C. D.4.在平面直角坐標系中,以原點O為位似中心,把△ABC放大得到△A1B1C1,使它們的相似比為1:2,若點A的坐標為(2,2),則它的對應點A1的坐標一定是()A.(﹣2,﹣2) B.(1,1)C.(4,4) D.(4,4)或(﹣4,﹣4)5.如圖所示,在矩形中,,點在邊上,平分,,垂足為,則等于()A. B.1 C. D.26.拋物線y=﹣x2+1向右平移2個單位長度,再向下平移3個長度單位得到的拋物線解析式是()A.y=﹣(x﹣2)2+4 B.y=﹣(x﹣2)2﹣2C.y=﹣(x+2)2+4 D.y=﹣(x+2)2﹣27.拋物線的頂點坐標是()A. B. C. D.8.如圖,在蓮花山滑雪場滑雪,需從山腳下乘纜車上山,纜車索道與水平線所成的角為,纜車速度為每分鐘米,從山腳下到達山頂纜車需要分鐘,則山的高度為()米.A. B.C. D.9.二次函數的圖象的頂點坐標是()A. B. C. D.10.已知二次函數(是常數),下列結論正確的是()A.當時,函數圖象經過點B.當時,函數圖象與軸沒有交點C.當時,函數圖象的頂點始終在軸下方D.當時,則時,隨的增大而增大.11.已知:不在同一直線上的三點A,B,C求作:⊙O,使它經過點A,B,C作法:如圖,(1)連接AB,作線段AB的垂直平分線DE;(2)連接BC,作線段BC的垂直平分線FG,交DE于點O;(3)以O為圓心,OB長為半徑作⊙O.⊙O就是所求作的圓.根據以上作圖過程及所作圖形,下列結論中正確的是()A.連接AC,則點O是△ABC的內心 B.C.連接OA,OC,則OA,OC不是⊙的半徑 D.若連接AC,則點O在線段AC的垂直平分線上12.已知是方程x2﹣2x+c=0的一個根,則c的值是()A.﹣3 B.3 C. D.2二、填空題(每題4分,共24分)13.已知反比例函數y=的圖象在第一、三象限內,則k的值可以是__.(寫出滿足條件的一個k的值即可)14.一天晚上,小偉幫助媽媽清洗兩個只有顏色不同的有蓋茶杯,突然停電了,小偉只好把杯蓋和茶杯隨機地搭配在一起,則顏色搭配正確的概率是_____.15.小強同學從﹣1,0,1,2,3,4這六個數中任選一個數,滿足不等式x+1<2的概率是_____.16.《算學寶鑒》中記載了我國數學家楊輝提出的一個問題:“直田積八百六十四步,之云闊不及長十二步,問長闊共幾何?”譯文:一個矩形田地的面積等于864平方步,且它的寬比長少12步,問長與寬的和是多少步?如果設矩形田地的長為x步,可列方程為_________.17.如圖,已知矩形ABCD的兩條邊AB=1,AD=,以B為旋轉中心,將對角線BD順時針旋轉60°得到線段BE,再以C為圓心將線段CD順時針旋轉90°得到線段CF,連接EF,則圖中陰影部分面積為_____.18.已知如圖,是的中位線,點是的中點,的延長線交于點A,那么=__________.三、解答題(共78分)19.(8分)學校準備建一個矩形花圃,其中一邊靠墻,另外三邊用周長為30米的籬笆圍成.已知墻長為18米,設花圃垂直于墻的一邊長為x米,花圃的面積為y平方米.(1)求出y與x的函數關系式,并寫出x的取值范圍;(2)當x為何值時,y有最大值?最大值是多少?20.(8分)解方程:(1)(公式法)(2)21.(8分)如圖,AB是⊙O的直徑,BM切⊙O于點B,點P是⊙O上的一個動點(點P不與A,B兩點重合),連接AP,過點O作OQ∥AP交BM于點Q,過點P作PE⊥AB于點C,交QO的延長線于點E,連接PQ,OP.(1)求證:△BOQ≌△POQ;(2)若直徑AB的長為1.①當PE=時,四邊形BOPQ為正方形;②當PE=時,四邊形AEOP為菱形.22.(10分)近期江蘇省各地均發布“霧霾”黃色預警,我市某口罩廠商生產一種新型口罩產品,每件制造成本為18元,試銷過程中發現,每月銷售量y(萬件)與銷售單價x(元)之間的關系滿足下表.銷售單價x(元/件)…20253040…每月銷售量y(萬件)…60504020…(1)請你從所學過的一次函數、二次函數和反比例函數三個模型中確定哪種函數能比較恰當地表示y與x的變化規律,并直接寫出y與x之間的函數關系式為__________;(2)當銷售單價為多少元時,廠商每月獲得的利潤為440萬元?(3)如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?23.(10分)一個可以自由轉動的轉盤,其盤面分為等份,分別標上數字.小穎準備轉動轉盤次,現已轉動次,每一次停止后,小穎將指針所指數字記錄如下:次數數字小穎繼續自由轉動轉盤次,判斷是否可能發生“這次指針所指數字的平均數不小于且不大于”的結果?若有可能,計算發生此結果的概率,并寫出計算過程;若不可能,請說明理由.(指針指向盤面等分線時為無效轉次.)24.(10分)如圖,二次函數的圖象與軸交于點和點,與軸交于點,以為邊在軸上方作正方形,點是軸上一動點,連接,過點作的垂線與軸交于點.(1)求該拋物線的函數關系表達式;(2)當點在線段(點不與重合)上運動至何處時,線段的長有最大值?并求出這個最大值;(3)在第四象限的拋物線上任取一點,連接.請問:的面積是否存在最大值?若存在,求出此時點的坐標;若不存在,請說明理由.25.(12分)已知:平行四邊形ABCD的兩邊AB,AD的長是關于x的方程x2﹣mx+﹣=0的兩個實數根.(1)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;(2)若AB的長為2,那么?ABCD的周長是多少?26.已知關于的方程.(1)當取何值時,方程有兩個不相等的實數根;(2)若、為方程的兩個不等實數根,且滿足,求的值.

參考答案一、選擇題(每題4分,共48分)1、D【分析】由DE∥BC可以推得ΔADE~ΔABC,再由相似三角形的性質出發可以判斷各選項的對錯.【詳解】∵DE∥BC,∴ΔADE~ΔABC,所以有:A、,正確;B、由A得,即,正確;C、,即,正確;D、,即,錯誤.故選D.【點睛】本題考查三角形相似的判定與性質,根據三角形相似的性質寫出有關線段的比例式是解題關鍵.2、D【解析】根據函數的定義可知,滿足對于x的每一個取值,y都有唯一確定的值與之對應關系,據此即可確定答案.【詳解】A.如圖,,對于該x的值,有兩個y值與之對應,不是函數圖象;B.如圖,,對于該x的值,有兩個y值與之對應,不是函數圖象;C.如圖,對于該x的值,有兩個y值與之對應,不是函數圖象;D.對每一個x的值,都有唯一確定的y值與之對應,是函數圖象.故選:D.【點睛】本題考查了函數的定義.函數的定義:在一個變化過程中,有兩個變量x,y,對于x的每一個取值,y都有唯一確定的值與之對應,則y是x的函數,x叫自變量.3、B【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形;

B、不是軸對稱圖形,是中心對稱圖形;

C、是軸對稱圖形,也是中心對稱圖形;

D、不是軸對稱圖形,也不是中心對稱圖形.

故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180°后與原圖重合.4、D【解析】根據如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k進行解答.【詳解】∵以原點O為位似中心,相似比為:1:2,把△ABC放大得到△A1B1C1,點A的坐標為(2,2),則它的對應點A1的坐標一定為:(4,4)或(-4,-4),

故選D.【點睛】本題考查了位似變換:位似圖形與坐標,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.5、C【分析】利用矩形的性質、全等的性質結合方程與勾股定理計算即可得出答案.【詳解】根據矩形的性質可得,∠D=90°又EF⊥AE∴∠AEF=90°∴∵AF平分∠DAE∴∠EAF=∠DAF在△AEF和△ADF中∴△AEF≌△ADF∴AE=AD=BC=5,DF=EF在RT△ABE中,∴EC=BC-BE=2設DF=EF=x,則CF=4-x在RT△CEF中,即解得:x=∴故答案選擇C.【點睛】本題考查的是矩形的綜合,難度適中,解題關鍵是利用全等證出△AEF≌△ADF.6、B【分析】根據“上加下減,左加右減”的原則進行解答即可.【詳解】解:由“左加右減”的原則可知,將拋物線y=﹣x2+1向右平移2個單位長度所得的拋物線的解析式為:y=﹣(x﹣2)2+1.再向下平移3個單位長度所得拋物線的解析式為:y=﹣(x﹣2)2﹣2.故選:B.【點睛】本題考查了二次函數圖象的平移,其規律是:將二次函數解析式轉化成頂點式y=a(x-h)2+k

(a,b,c為常數,a≠0),確定其頂點坐標(h,k),在原有函數的基礎上“h值正右移,負左移;k值正上移,負下移”.7、A【分析】根據二次函數的性質,利用頂點式即可得出頂點坐標.【詳解】解:∵拋物線,

∴拋物線的頂點坐標是:(1,3),

故選:A.【點睛】本題主要考查了利用二次函數頂點式求頂點坐標.能根據二次函數的頂點式找出拋物線的對稱軸及頂點坐標是解題的關鍵.8、C【分析】在中,利用∠BAC的正弦解答即可.【詳解】解:在中,,,(米),∵,(米).故選.【點睛】本題考查了三角函數的應用,屬于基礎題型,熟練掌握三角函數的定義是解題的關鍵.9、B【分析】根據二次函數的性質,用配方法求出二次函數頂點式,再得出頂點坐標即可.【詳解】解:∵拋物線

=(x+1)2+3

∴拋物線的頂點坐標是:(?1,3).

故選B.【點睛】此題主要考查了利用配方法求二次函數頂點式以及求頂點坐標,此題型是考查重點,應熟練掌握.10、D【分析】將和點代入函數解析式即可判斷A選項;利用可以判斷B選項;根據頂點公式可判斷C選項;根據拋物線的增減性質可判斷D選項.【詳解】A.將和代入,故A選項錯誤;B.當時,二次函數為,,函數圖象與軸有一個交點,故B選項錯誤;C.函數圖象的頂點坐標為,即,當時,不一定小于0,則頂點不一定在軸下方,故C選項錯誤;D.當時,拋物線開口向上,由C選項得,函數圖象的對稱軸為,所以時,隨的增大而增大,故D選項正確;故選:D.【點睛】本題考查了二次函數圖象與系數的關系、二次函數圖象上點的坐標特征、根的判別式以及拋物線與x軸的交點,掌握拋物線的對稱軸、開口方向與系數之間的關系是解題的關鍵.11、D【分析】根據三角形的外心性質即可解題.【詳解】A:連接AC,根據題意可知,點O是△ABC的外心,故A錯誤;B:根據題意無法證明,故B錯誤;C:連接OA,OC,則OA,OC是⊙的半徑,故C錯誤D:若連接AC,則點O在線段AC的垂直平分線上,故D正確故答案為:D.【點睛】本題考查了三角形的確定即不在一條線上的三個點確定一個圓,這個圓是三角形的外接圓,o是三角形的外心.12、B【分析】把x=代入方程得到關于c的方程,然后解方程即可.【詳解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故選:B.【點睛】本題考查了一元二次方程根的性質,解答關鍵是將方程的根代入原方程求出字母系數.二、填空題(每題4分,共24分)13、1【解析】在本題中已知“反比例函數的圖像在第一、三象限內,”從而得到2-k>0,順利求解k的值.【詳解】反比例函數的圖像在第一、三象限內可得,2-k>0解得:k<2不妨取k=1,可得已知反比例函數,即可滿足的圖像在第一、三象限內.【點睛】熟練掌握反比例函數的性質是本題的解題關鍵.14、【解析】分析:根據概率的計算公式.顏色搭配總共有4種可能,分別列出搭配正確和搭配錯誤的可能,進而求出各自的概率即可.詳解:用A和a分別表示第一個有蓋茶杯的杯蓋和茶杯;用B和b分別表示第二個有蓋茶杯的杯蓋和茶杯、經過搭配所能產生的結果如下:Aa、Ab、Ba、Bb.所以顏色搭配正確的概率是.故答案為:.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.15、【分析】首先解不等式得x<1,然后找出這六個數中符合條件的個數,再利用概率公式求解.【詳解】解:∵x+1<2∴x<1∴在﹣1,0,1,2,3,4這六個數中,滿足不等式x+1<2的有﹣1、0這兩個,∴滿足不等式x+1<2的概率是,故答案為:.【點睛】本題考查求概率,熟練掌握概率公式是解題的關鍵.16、x(x-12)=864【解析】設矩形田地的長為x步,那么寬就應該是(x?12)步.根據矩形面積=長×寬,得:x(x?12)=864.故答案為x(x?12)=864.17、【分析】矩形ABCD的兩條邊AB=1,AD=,得到∠DBC=30°,由旋轉的性質得到BD=BE,∠BDE=60°,求得∠CBE=∠DBC=30°,連接CE,根據全等三角形的性質得到∠BCE=∠BCD=90°,推出D,C,E三點共線,得到CE=CD=1,根據三角形和扇形的面積公式即可得到結論.【詳解】∵矩形ABCD的兩條邊AB=1,AD=,∴,∴∠DBC=30°,∵將對角線BD順時針旋轉60°得到線段BE,∴BD=BE,∠BDE=60°,∴∠CBE=∠DBC=30°,連接CE,∴△DBC≌△EBC(SAS),∴∠BCE=∠BCD=90°,∴D,C,E三點共線,∴CE=CD=1,∴圖中陰影部分面積=S△BEF+S△BCD+S扇形DCF﹣S扇形DBE=+﹣=,故答案為:.【點睛】本題考查了旋轉的性質,解直角三角形,矩形的性質,扇形的面積計算等知識點,能求出各個部分的面積是解此題的關鍵.18、1:1【分析】連結AP并延長交BC于點F,則S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,則S△CPE:S△ABC=1:1.【詳解】解:連結AP并延長交BC于點F,∵DE△ABC的中位線,∴E是AC的中點,∴S△CPE=S△AEP,∵點P是DE的中點,∴S△AEP=S△ADP,∴S△CPE:S△ADE=1:2,∵DE是△ABC的中位線,∴DE∥BC,DE:BC=1:2,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△CPE:S△ABC=1:1.故答案為1:1.【點睛】本題考查三角形的中位線定理,相似三角形的判定和性質,三角形的面積等知識,解題的關鍵是熟練掌握基本知識.三、解答題(共78分)19、(1)y=﹣2x2+30x;6≤x<11;(2)當x=7.1時,y的最大值是112.1.【分析】(1)利用矩形的面積公式,列出面積y關于x的函數解析式,即可求解;(2)根據自變量的取值范圍和函數的對稱性確定函數的最大值即可.【詳解】解:(1)由題意可得,y=x(30﹣2x)=﹣2x2+30x,即y與x的函數關系式是y=﹣2x2+30x;∵墻的長度為18,∴0<30﹣2x≤18,解得,6≤x<11,即x的取值范圍是6≤x<11;(2)由(1)知,y=﹣2x2+30x=﹣2(x﹣)2+,而6≤x<11,∴當x=7.1時,y取得最大值,此時y=112.1,即當x=7.1時,y的最大值是112.1.【點睛】本題主要考查二次函數的實際應用,關鍵是根據題意得到函數關系式,然后利用二次函數的性質進行求解即可.20、(1),(2),【分析】(1)利用公式法解一元二次方程,即可得到答案;(2)利用因式分解法解一元二次方程,即可得到答案.【詳解】解:(1),∵,,,∴,∴,∴,;(2),∴,∴,∴或,∴,.【點睛】本題考查了解一元二次方程,解題的關鍵是熟練掌握一元二次方程的方法和步驟.21、(1)見解析;(2)①6,②6.【分析】(1)根據切線的性質得∠OBQ=90°,再根據平行線的性質得∠APO=∠POQ,∠OAP=∠BOQ,加上∠OPA=∠OAP,則∠POQ=∠BOQ,于是根據“SAS”可判斷△BOQ≌△POQ;(2)①利用△BOQ≌△POQ得到∠OPQ=∠OBQ=90°,由于OB=OP,所以當∠BOP=90°,四邊形OPQB為正方形,此時點C、點E與點O重合,于是PE=PO=6;②根據菱形的判定,當OC=AC,PC=EC,四邊形AEOP為菱形,則OC=OA=3,然后利用勾股定理計算出PC,從而得到PE的長.【詳解】(1)證明:∵BM切⊙O于點B,∴OB⊥BQ,∴∠OBQ=90°,∵PA∥OQ,∴∠APO=∠POQ,∠OAP=∠BOQ,而OA=OP,∴∠OPA=∠OAP,∴∠POQ=∠BOQ,在△BOQ和△POQ中,∴△BOQ≌△POQ;(2)解:①∵△BOQ≌△POQ,∴∠OPQ=∠OBQ=90°,當∠BOP=90°,四邊形OPQB為矩形,而OB=OP,則四邊形OPQB為正方形,此時點C、點E與點O重合,PE=PO=AB=6;②∵PE⊥AB,∴當OC=AC,PC=EC,四邊形AEOP為菱形,∵OC=OA=3,∴PC=,∴PE=2PC=6.故答案為6,6.【點睛】本題考查了切線的性質、全等三角形的判定與性質和菱形、正方形的判定方法;綜合應用所學知識是解答本題的關鍵.22、(1)y=﹣2x+100;(2)當銷售單價為28元或1元時,廠商每月獲得的利潤為41萬元;(3)當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為510萬元.【分析】(1)直接利用待定系數法求出一次函數解析式;(2)根據利潤=銷售量×(銷售單價﹣成本),代入代數式求出函數關系式,令利潤z=41,求出x的值;(3)根據廠商每月的制造成本不超過51萬元,以及成本價18元,得出銷售單價的取值范圍,進而得出最大利潤.【詳解】解:(1)由表格中數據可得:y與x之間的函數關系式為:y=kx+b,把(20,60),(25,50)代入得:解得:故y與x之間的函數關系式為:y=﹣2x+100;(2)設總利潤為z,由題意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800;當z=41時,﹣2x2+136x﹣1800=41,解得:x1=28,x2=1.答:當銷售單價為28元或1元時,廠商每月獲得的利潤為41萬元;(3)∵廠商每月的制造成本不超過51萬元,每件制造成本為18元,∴每月的生產量為:小于等于=30萬件,y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴圖象開口向下,對稱軸右側z隨x的增大而減小,∴x=35時,z最大為:510萬元.當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為510萬元.【點睛】本題考查的是二次函數在實際生活中的應用,關鍵是根據題意求出二次函數的解析式以及利用增減性求出最值.23、能,.【分析】根據平均數的定義求解可得后兩次數字之和為8或9;根據題意畫出樹狀圖,再利用概率公式求其概率.【詳解】能設第4次、第5次轉出的數字分別為和,根據題意得:,解得:,所以后兩次數字之和為8或9;畫出樹狀圖:共有9種等情況數,其中“兩次數字之和為8或9”的有5種,所以.【點睛】本題考查用列表法或樹狀圖的方法解決概率問題;求一元一次不等式組的方法以及概率公式的運用.求出事件的所有情況和符合條件的情況數是解決本題的關鍵;用到的知識點為:概率等于所求情況數與總情況數之比.24、(1);(2)時,線段有最大值.最大值是;(3)時,的面積有最大值,最大值是,此時點的坐標為.【分析】(1)將點的坐標代入二次函數表達式,即可求解;(2)設,則,由得出比例線段,可表示的長,利用二次函數的性質可求出線段的最大值;(3)過點作軸交于點,由即可求解.【詳解】解:(1))∵拋物線經過,,把兩點坐標代入上式,,解得:,故拋物線函數關系表達式為;(2)∵,點,∴,∵正方形中,,∴,,∴,又∵,∴,∴,設,則,∴,∴,∵,∴時,線段長有最大值,最大值為.即時,線段有最大值.最大值是.(3)存在.如圖,過點作軸交于點,∵拋物線的解析式為,∴,∴點坐標為,設直線的解析式為,∴,∴,∴直線的解析式為,設,則,∴,∴,∵,∴時,的面積有最大值,最大值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論