




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省瀘州瀘縣聯考九年級數學第一學期期末調研模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.已知函數,當時,<x<,則函數的圖象可能是下圖中的()A. B.C. D.2.如圖,P是邊長為1的正方形ABCD對角線AC上一動點(P與A、C不重合),點E在射線BC上,且PE=PB.設AP=x,△PBE的面積為y.則下列圖象中,能表示y與x的函數關系的圖象大致是()A. B. C. D.3.如圖,△ABC中,∠C=90°,AC=3,∠B=30°,點P是BC邊上的動點,則AP的長不可能是()A.3.5 B.4.2 C.5.8 D.74.如圖,AB是⊙O的直徑,CD是⊙O的弦,如果∠ACD=35°,那么∠BAD等于()A.35° B.45° C.55° D.65°5.下列說法中,不正確的是()A.所有的菱形都相似 B.所有的正方形都相似C.所有的等邊三角形都相似 D.有一個角是100°的兩個等腰三角形相似6.函數y=-x2-3的圖象頂點是()A. B. C. D.7.下列事件中,屬于必然事件的是()A.小明買彩票中獎 B.投擲一枚質地均勻的骰子,擲得的點數是奇數C.等腰三角形的兩個底角相等 D.是實數,8.圓的面積公式S=πR2中,S與R之間的關系是()A.S是R的正比例函數 B.S是R的一次函數C.S是R的二次函數 D.以上答案都不對9.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,10.如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長為()A.1 B. C.2 D.11.如圖,點P在△ABC的邊AC上,下列條件中不能判斷△ABP∽△ACB的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP?AC D.CB2=CP?CA12.如圖,在中,,則劣弧的度數為()A. B. C. D.二、填空題(每題4分,共24分)13.一個幾何體是由一些大小相同的小正方塊擺成的,其俯視圖與主視圖如圖所示,則組成這個幾何體的小正方塊最多有________.14.如圖,二次函數y=x(x﹣3)(0≤x≤3)的圖象,記為C1,它與x軸交于點O,A1;將C1點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;……若P(2020,m)在這個圖象連續旋轉后的所得圖象上,則m=_____.15.如圖所示,等邊△ABC中D點為AB邊上一動點,E為直線AC上一點,將△ADE沿著DE折疊,點A落在直線BC上,對應點為F,若AB=4,BF:FC=1:3,則線段AE的長度為_____.16.如圖,在△ABC中,點DE分別在ABAC邊上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6.則線段CD的長為______17.如圖,在中,,為邊上的中線,過點作于點,過點作的平行線,交的延長線于點,在的延長線上截取,連接、.若,,則的長為____________.18.一個三角形的三邊之比為,與它相似的三角形的周長為,則與它相似的三角形的最長邊為____________.三、解答題(共78分)19.(8分)如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,6),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)求拋物線的解析式;(2)當C為拋物線頂點的時候,求的面積.(3)是否存在質疑的點P,使的面積有最大值,若存在,求出這個最大值,若不存在,請說明理由.20.(8分)某圖書館2014年年底有圖書20萬冊,預計2016年年底圖書增加到28.8萬冊.(1)求該圖書館這兩年圖書冊數的年平均增長率;(2)如果該圖書館2017年仍保持相同的年平均增長率,請你預測2017年年底圖書館有圖書多少萬冊?21.(8分)有兩個構造完全相同(除所標數字外)的轉盤A、B,游戲規定,轉動兩個轉盤各一次,指向大的數字獲勝.現由你和小明各選擇一個轉盤游戲,你會選擇哪一個,為什么?22.(10分)如圖,斜坡AF的坡度為5:12,斜坡AF上一棵與水平面垂直的大樹BD在陽光照射下,在斜坡上的影長BC=6.5米,此時光線與水平線恰好成30°角,求大樹BD的高.(結果精確的0.1米,參考數據≈1.414,≈1.732)23.(10分)為了“城市更美好、人民更幸福”,我市開展“三城聯創”活動,環衛部門要求垃圾按三類分別裝袋、投放,其中類指廢電池,過期藥品等有毒垃圾,類指剩余食品等廚余垃圾,類指塑料、廢紙等可回收垃圾,甲、乙兩人各投放一袋垃圾.(1)甲投放的垃圾恰好是類的概率是;(2)用樹狀圖或表格求甲、乙兩人投放的垃圾是不同類別的概率.24.(10分)如圖,點E是△ABC的內心,AE的延長線與△ABC的外接圓相交于點D.(1)若∠BAC=70°,求∠CBD的度數;(2)求證:DE=DB.25.(12分)如圖所示,在平面直角坐標系中,拋物線的頂點坐標為,并與軸交于點,點是對稱軸與軸的交點.(1)求拋物線的解析式;(2)如圖①所示,是拋物線上的一個動點,且位于第一象限,連結BP、AP,求的面積的最大值;(3)如圖②所示,在對稱軸的右側作交拋物線于點,求出點的坐標;并探究:在軸上是否存在點,使?若存在,求點的坐標;若不存在,請說明理由.26.已知拋物線與軸交于兩點,與軸交于點.(1)求此拋物線的表達式及頂點的坐標;(2)若點是軸上方拋物線上的一個動點(與點不重合),過點作軸于點,交直線于點,連結.設點的橫坐標為.①試用含的代數式表示的長;②直線能否把分成面積之比為1:2的兩部分?若能,請求出點的坐標;若不能,請說明理由.(3)如圖2,若點也在此拋物線上,問在軸上是否存在點,使?若存在,請直接寫出點的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、A【分析】先可判定a<0,可知=,=,可得∴a=6b,a=-6c,不妨設c=1,進而求出解析式,找出符合要求的答案即可.【詳解】解:∵函數,當時,<x<,,∴可判定a<0,可知=+=,=×=∴a=6b,a=-6c,則b=-c,不妨設c=1,則函數為函數,即y=(x-2)(x+3),∴可判斷函數的圖像與x軸的交點坐標是(2,0),(-3,0),∴A選項是正確的.故選A.【點睛】本題考查拋物線和x軸交點的問題以及二次函數與系數關系,靈活掌握二次函數的性質是解決問題的關鍵.2、D【詳解】解:過點P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD的邊長是1,∴AC=,∵AP=x,∴PC=-x,∴PF=FC=,∴BF=FE=1-FC=,∴S△PBE=BE?PF=,即(0<x<),故選D.【點睛】本題考查動點問題的函數圖象.3、D【詳解】解:根據垂線段最短,可知AP的長不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,∴AP的長不能大于1.∴故選D.4、C【分析】根據題意可知、,通過與互余即可求出的值.【詳解】解:∵∴∵是的直徑∴∴故選:C【點睛】本題考查了圓周角定理,同弧所對的圓周角相等、并且等于它所對的圓心角的一半,也考查了直徑所對的圓周角為90度.5、A【分析】根據相似多邊形的定義,即可得到答案.【詳解】解:A、所有的菱形都相似,錯誤;B、所有的正方形都相似,正確;C、所有的等邊三角形都相似,正確;D、有一個角是100°的兩個等腰三角形相似,正確;故選:A.【點睛】本題考查了相似多邊形的定義,熟練掌握相似多邊形的性質:對應角相等,對應邊成比例是解題的關鍵.6、C【解析】函數y=-x2-3的圖象頂點坐標是(0,-3).故選C.7、C【分析】由題意根據事件發生的可能性大小判斷相應事件的類型即可判斷選項.【詳解】解:A.小明買彩票中獎,是隨機事件;B.投擲一枚質地均勻的骰子,擲得的點數是奇數,是隨機事件;C.等腰三角形的兩個底角相等,是必然事件;D.是實數,,是不可能事件;故選C.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.8、C【解析】根據二次函數的定義,易得S是R的二次函數,故選C.9、D【分析】先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.10、D【分析】先由圓周角定理求出∠BOC的度數,再過點O作OD⊥BC于點D,由垂徑定理可知CD=BC,∠DOC=∠BOC=×120°=60°,再由銳角三角函數的定義即可求出CD的長,進而可得出BC的長.【詳解】解:∵∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,過點O作OD⊥BC于點D,∵OD過圓心,∴CD=BC,∠DOC=∠BOC=×120°=60°,∴CD=OC×sin60°=2×=,∴BC=2CD=2.故選D.【點睛】本題考查的是圓周角定理、垂徑定理及銳角三角函數的定義,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.11、D【分析】觀察圖形可得,與已經有一組角∠重合,根據三角形相似的判定定理,可以再找另一組對應角相等,或者∠的兩條邊對應成比例.注意答案中的、兩項需要按照比例的基本性質轉化為比例式再確定.【詳解】解:項,∠=∠,可以判定;項,∠=∠,可以判定;項,,,可以判定;項,,,不能判定.【點睛】本題主要考查了相似三角形的判定定理,結合圖形,按照定理找到條件是解答關鍵.12、A【解析】注意圓的半徑相等,再運用“等腰三角形兩底角相等”即可解.【詳解】連接OA,
∵OA=OB,∠B=37°
∴∠A=∠B=37°,∠O=180°-2∠B=106°.故選:A【點睛】本題考核知識點:利用了等邊對等角,三角形的內角和定理求解解題關鍵點:熟記圓心角、弧、弦的關系;三角形內角和定理.二、填空題(每題4分,共24分)13、6【解析】符合條件的最多情況為:即最多為2+2+2=614、1.【分析】x(x﹣3)=0得A1(3,0),再根據旋轉的性質得OA1=A1A1=A1A3=…=A673A674=3,所以拋物線C764的解析式為y=﹣(x﹣1019)(x﹣1011),然后計算自變量為1010對應的函數值即可.【詳解】當y=0時,x(x﹣3)=0,解得x1=0,x1=3,則A1(3,0),∵將C1點A1旋轉180°得C1,交x軸于點A1;將C1繞點A1旋轉180°得C3,交x軸于點A3;……∴OA1=A1A1=A1A3=…=A673A674=3,∴拋物線C764的解析式為y=﹣(x﹣1019)(x﹣1011),把P(1010,m)代入得m=﹣(1010﹣1019)(1010﹣1011)=1.故答案為1.【點睛】本題考查圖形類規律,解題的關鍵是掌握圖形類規律的基本解題方法.15、或14【解析】點E在直線AC上,本題分兩類討論,翻折后點F在BC線段上或點F在CB延長線上,根據一線三角的相似關系求出線段長.【詳解】解:按兩種情況分析:①點F在線段BC上,如圖所示,由折疊性質可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C∴△BDF∽△CFE,∴∵AB=4,BF:FC=1:3∴BF=1,CF=3設AE=x,則EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,經檢驗當x=時,4﹣x≠0∴x=是原方程的解②當點F在線段CB的延長線上時,如圖所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6設AE=a,可知AE=EF=a,CE=a﹣4∴解得BD=,DF=∵BD+DF=BD+AD=4∴解得a=14經檢驗當a=14時,a﹣4≠0∴a=14是原方程的解,綜上可得線段AE的長為或14故答案為或14【點睛】本題考查了翻折問題,根據點在不同的位置對問題進行分類,并通過一線三角形的相似關系建立方程是本題的關鍵.16、【分析】設AD=2x,BD=x,所以AB=3x,易證△ADE∽△ABC,利用相似三角形的性質可求出DE的長度,以及,再證明△ADE∽△ACD,利用相似三角形的性質即可求出得出,從而可求出CD的長度.【詳解】設AD=2x,BD=x,∴AB=3x,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴DE=4,,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴,設AE=2y,AC=3y,∴,∴AD=y,∴,∴CD=2,故填:2.【點睛】本題考查相似三角形,解題的關鍵是熟練運用相似三角形的性質與判定,本題屬于中等題型.17、【分析】首先可判斷四邊形BGFD是平行四邊形,再由直角三角形斜邊中線等于斜邊一半,可得BD=FD,則可判斷四邊形BGFD是菱形,則GF=10,則AF=16,AC=20,在Rt△ACF中利用勾股定理可求出CF的值.【詳解】解:∵AG∥BD,BD=FG,∴四邊形BGFD是平行四邊形,∵CF⊥BD,∴CF⊥AG,又∵點D是AC中點,∴BD=DF=AC,∴四邊形BGFD是菱形,∴GF=BG=10,則AF=26-10=16,AC=2×10=20,∵在Rt△ACF中,∠CFA=90°,∴即故答案是:1.【點睛】本題考查了菱形的判定與性質、勾股定理及直角三角形的斜邊中線的性質,解答本題的關鍵是判斷出四邊形BGFD是菱形.18、18cm.【分析】由一個三角形的三邊之比為3:6:4,可得與它相似的三角形的三邊之比為3:6:4,又由與它相似的三角形的周長為39cm,即可求得答案.【詳解】解:∵一個三角形的三邊之比為3:6:4,∴與它相似的三角形的三邊之比為3:6:4,∵與它相似的三角形的周長為39cm,∴與它相似的三角形的最長邊為:39×=18(cm).
故答案為:18cm.【點睛】此題考查了相似三角形的性質.此題比較簡單,注意相似三角形的對應邊成比例.三、解答題(共78分)19、(1);(2)(3)存在,(m為點P的橫坐標)當m=時,【分析】(1)把A、B坐標代入二次函數解析式,求出a、b,即可求得解析式;(2)根據第(1)問求出的函數解析式可得出C點的坐標,根據C、P兩點橫坐標一樣可得出P點的坐標,將△BCE的面積分成△PCE與△PCB,以PC為底,即可求出△BCE的面積.(3)設動點P的坐標為(m,m+2),點C的坐標為(m,),表示出PC的長度,根據,構造二次函數,然后求出二次函數的最大值,并求出此時m的值即可.【詳解】解:(1)∵A()和B(4,6)在拋物線y=ax2+bx+6上,∴解得:,∴拋物線的解析式;(2)∵二次函數解析式為,∴頂點C坐標為,∵PC⊥x,點P在直線y=x+2上,∴點P的坐標為,∴PC=6;∵點E為直線y=x+2與x軸的交點,∴點E的坐標為∵=∴.(3)存在.設動點P的坐標是,點C的坐標為,∵∴∵,∴函數開口向下,有最大值∴當時,△ABC的面積有最大值為.【點睛】本題考查二次函數的綜合應用.(1)中考查利用待定系數發求函數解析式,注意求出函數解析式后要再驗算一遍,因為第一問的結果涉及后面幾問的計算,所以一定要保證正確;(2)中考查三角形面積的計算,坐標系中三角形面積要以坐標軸或者平行于坐標軸的邊為底,如果沒有的話要利用割補法進行計算;(3)在(2)的基礎上,求動點形成的三角形面積的最值,要設動點的坐標,然后構造相應的函數解析式,再分析最值.20、(1)20%(2)34.56【解析】試題分析:(1)經過兩次增長,求年平均增長率的問題,應該明確原來的基數,增長后的結果.設這兩年的年平均增長率為x,則經過兩次增長以后圖書館有書20(1+x)2萬冊,即可列方程求解;(2)利用求得的百分率,進一步求得2017年年底圖書館存圖書數量即可.試題解析:(1)設年平均增長率為x,根據題意得20(1+x)2=28.8,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:該圖書館這兩年圖書冊數的年平均增長率為20%;(2)28.8(1+0.2)=34.56(萬冊)答:預測2016年年底圖書館存圖書34.56萬冊.考點:一元二次方程的應用21、選擇A轉盤.理由見解析【解析】試題分析:由題意可以畫出樹狀圖,然后根據樹狀圖求得到所有等可能的結果,找全滿足條件的所有情況,再利用概率公式即可求得答案.試題解析:選擇A轉盤.畫樹狀圖得:∵共有9種等可能的結果,A大于B的有5種情況,A小于B的有4種情況,∴P(A大于B)=,P(A小于B)=,∴選擇A轉盤.考點:列表法與樹狀圖法求概率22、大樹的高約為6.0米.【分析】作CM⊥DB于點M,已知BC的坡度即可得到BM和CM的比值,在Rt△MBC中,利用勾股定理即可求得BM和MC的長度,再在Rt△DCM中利用三角函數求得DM的長,由BD=BM+DM即可求得大樹BD的高.【詳解】作CM⊥DB于點M,∵斜坡AF的坡度是1::2.4,∠A=∠BCM,∴==,∴在直角△MBC中,設BM=5x,則CM=12x.由勾股定理可得:BM2+CM2=BC2,∴(5x)2+(12x)2=6.52,解得:x=,∴BM=5x=,CM=12x=6,在直角△MDC中,∠DCM=∠EDG=30°,∴DM=CM?tan∠DCM=6tan30°=6×=2,∴BD=DM+BM=+2≈2.5+2×1.732≈6.0(米).答:大樹的高約為6.0米.【點睛】本題考查了解直角三角形的應用,正確作出輔助線,構造直角三角形模型是解決問題的關鍵.23、(1);(2).【分析】(1)一共有3種等可能的結果,恰為類的概率是(2)根據題意列出所有等可能的結果數,然后根據概率公式求解.【詳解】(1)(2)甲乙ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,甲、乙兩人投放的垃圾共有9種結果,每種結果出現的可能性相同,其中甲、乙投放的垃圾恰是不同類別的有6種,即(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),∴(甲、乙投放的垃圾是不同類別).【點睛】本題考查了列表法或樹狀圖以及概率的求法.24、(1)35°;(2)證明見解析.【分析】(1)由點E是△ABC的內心,∠BAC=70°,易得∠CAD=,進而得出∠CBD=∠CAD=35°;(2)由點E是△ABC的內心,可得E點為△ABC角平分線的交點,可得∠ABE=∠CBE,∠BAD=∠CAD,可推導出∠DBE=∠BED,可得DE=DB.【詳解】(1)∵點E是△ABC的內心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是內心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【點睛】此題考查了圓的內心的性質以及角平分線的性質等知識.此題綜合性較強,注意數形結合思想的應用.25、(1);(2)當時,最大值為;(3)存在,點坐標為,理由見解析【分析】(1)利用待定系數法可求出二次函數的解析式;(2)求三角形面積的最值,先求出三角形面積的函數式.從圖形上看S△PAB=S△BPO+S△APO-S△AOB,設P求出關于n的函數式,從而求S△PAB的最大值.(3)求點D的坐標,設D,過D做DG垂直于AC于G,構造直角三角形,利用勾股定理或三角函數值來求t的值即得D的坐標;探究在y軸上是否存在點,使?根據以上條件和結論可知∠CAD=120°,是∠CQD的2倍,聯想到同弧所對的圓周角和圓心角,所以以A為圓心,AO長為半徑做圓交y軸與點Q,若能求出這樣的點,就存在Q點.【詳解】解:拋物線頂點為可設拋物線解析式為將代入得拋物線,即連接,設點坐標為當時,最大值為存在,設點D的坐標為過作對稱軸的垂線,垂足為,則在中有化簡得(舍去),∴點D(,-3)連接,在中在以為圓心,為半徑的圓與軸的交點上此時設點為(0,m),AQ為的半徑則AQ2=OQ2+OA2,62=m2+32即∴綜上所述,點坐標為故存在點Q,且這樣的點有兩個點.【點睛】(1)本題考查了利用待定系數法求二次函數解析式,根據已知條件選用頂點式較方便;(2)本題是三角形面積的最值問題,解決這個問題應該在分析圖形的基礎上,引出自變量,再根據圖形的特征列出面積的計算公式,用含自變量的代數式表示面積的函數式,然后求出最值.(3)先求拋物線上點的坐標問題及符合條件的點是否存在.一般先假設這個點存在,再根據已知條件求出這個點.26、(1),頂點坐標為:;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年微生物標本運輸要求試題及答案
- 電視設備智能生物樣本庫技術考核試卷
- 皮革服裝企業競爭策略制定考核試卷
- 2025年金屬非金屬礦山支柱證考試題及答案
- 2024年項目管理考試考點試題及答案
- 企業融資方式的財務分析試題及答案
- 汽車配件連鎖經營理念考核試卷
- 2024年行政管理師考試相關課程的試題及答案
- 2024年項目管理知識展示試題及答案
- 核安全事故分析與整改建議考核試卷
- 發熱病人中醫護理
- 捕鼠公司合同協議
- 工程審計面試題及答案
- 安置房收樓合同協議
- 2025-2030中國煤化工行業發展分析及投資風險與戰略研究報告
- 病歷書寫規范2025版
- 2025-2030中國養老服務行業市場深度調研及前景趨勢與投資研究報告
- 洗滌機械生產過程質量控制考核試卷
- 畫龍點睛成語故事
- 湖北省武漢市七一華源中學2024-2025學年九年級下學期第二次月考化學試題(含答案)
- TSSITS 2006-2024 面向特定場景低速自動駕駛產品準入及運營規范
評論
0/150
提交評論