




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的部分圖象如圖所示,則()A.6 B.5 C.4 D.32.已知集合,則=A. B. C. D.3.設復數滿足,則在復平面內的對應點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知復數z=(1+2i)(1+ai)(a∈R),若z∈R,則實數a=()A. B. C.2 D.﹣25.在等差數列中,若,則()A.8 B.12 C.14 D.106.已知集合,,則A. B.C. D.7.若關于的不等式有正整數解,則實數的最小值為()A. B. C. D.8.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.9.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.10.已知函數,存在實數,使得,則的最大值為()A. B. C. D.11.已知,若則實數的取值范圍是()A. B. C. D.12.已知展開式中第三項的二項式系數與第四項的二項式系數相等,,若,則的值為()A.1 B.-1 C.8l D.-81二、填空題:本題共4小題,每小題5分,共20分。13.已知實數滿足,則的最小值是______________.14.已知等差數列的各項均為正數,,且,若,則________.15.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,,則的面積為________.16.在的二項展開式中,所有項的系數之和為1024,則展開式常數項的值等于_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.18.(12分)已知函數.(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.19.(12分)已知函數,其中,為自然對數的底數.(1)當時,求函數的極值;(2)設函數的導函數為,求證:函數有且僅有一個零點.20.(12分)已知等差數列滿足,公差,等比數列滿足,,.求數列,的通項公式;若數列滿足,求的前項和.21.(12分)的內角的對邊分別為,若(1)求角的大?。?)若,求的周長22.(10分)如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心都在坐標原點,且橢圓與的離心率均為.(Ⅰ)求橢圓與橢圓的標準方程;(Ⅱ)過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當的面積取最大值時,求兩直線MA,MB斜率的比值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據正切函數的圖象求出A、B兩點的坐標,再求出向量的坐標,根據向量數量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數的圖象,平面向量數量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數圖象求出坐標,再根據向量數量積的坐標運算可得結果,屬于簡單題.2、C【解析】
本題考查集合的交集和一元二次不等式的解法,滲透了數學運算素養.采取數軸法,利用數形結合的思想解題.【詳解】由題意得,,則.故選C.【點睛】不能領會交集的含義易致誤,區分交集與并集的不同,交集取公共部分,并集包括二者部分.3、C【解析】
化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.【點睛】本題考查了復數的化簡和對應象限,意在考查學生的計算能力.4、D【解析】
化簡z=(1+2i)(1+ai)=,再根據z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數的運算及概念,還考查了運算求解的能力,屬于基礎題.5、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數列的基本量的求解,難度較易.已知等差數列的任意兩項的值,可通過構建和的方程組求通項公式.6、D【解析】
因為,,所以,,故選D.7、A【解析】
根據題意可將轉化為,令,利用導數,判斷其單調性即可得到實數的最小值.【詳解】因為不等式有正整數解,所以,于是轉化為,顯然不是不等式的解,當時,,所以可變形為.令,則,∴函數在上單調遞增,在上單調遞減,而,所以當時,,故,解得.故選:A.【點睛】本題主要考查不等式能成立問題的解法,涉及到對數函數的單調性的應用,構造函數法的應用,導數的應用等,意在考查學生的轉化能力,屬于中檔題.8、D【解析】
選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.9、D【解析】
根據線面垂直的性質,可知;結合即可證明,進而求得.由線段關系及平面向量數量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質應用,平面向量數量積的運算,屬于基礎題.10、A【解析】
畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點睛】本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.11、C【解析】
根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,12、B【解析】
根據二項式系數的性質,可求得,再通過賦值求得以及結果即可.【詳解】因為展開式中第三項的二項式系數與第四項的二項式系數相等,故可得,令,故可得,又因為,令,則,解得令,則.故選:B.【點睛】本題考查二項式系數的性質,以及通過賦值法求系數之和,屬綜合基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先畫出不等式組對應的可行域,再利用數形結合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當直線經過點時,直線的縱截距最小,目標函數取得最小值,且.故答案為:-8【點睛】本題主要考查線性規劃問題,意在考查學生對這些知識的理解掌握水平和數形結合分析能力.14、【解析】
設等差數列的公差為,根據,且,可得,解得,進而得出結論.【詳解】設公差為,因為,所以,所以,所以故答案為:【點睛】本題主要考查了等差數列的通項公式、需熟記公式,屬于基礎題.15、【解析】
根據個全等的三角形,得到,設,求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設,則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質,考查了推理能力與計算能力,屬于中檔題.16、【解析】
利用展開式所有項系數的和得n=5,再利用二項式展開式的通項公式,求得展開式中的常數項.【詳解】因為的二項展開式中,所有項的系數之和為4n=1024,n=5,故的展開式的通項公式為Tr+1=C·35-r,令,解得r=4,可得常數項為T5=C·3=15,故填15.【點睛】本題主要考查了二項式定理的應用、二項式系數的性質,二項式展開式的通項公式,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)取中點為,連接,,,,根據線段關系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點,,,為,,軸建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點為,連接,,,如下圖所示:因為,,,所以,故為等邊三角形,則.連接,因為,,所以為等邊三角形,則.又,所以平面.因為平面,所以.(2)由(1)知,因為平面平面,平面,所以平面,以為原點,,,為,,軸建立如圖所示的空間直角坐標系,易求,則,,,,則,,.設平面的法向量,則即令,則,,故.設平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【點睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.18、(1);(2).【解析】
(1)對范圍分類整理得:,分類解不等式即可.(2)利用已知轉化為“當時,”恒成立,利用絕對值不等式的性質可得:,問題得解.【詳解】當時,,當時,由得,解得;當時,無解;當時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當時,等價于恒成立,而,∴,故滿足條件的的取值范圍是【點睛】本題主要考查了含絕對值不等式的解法,還考查了轉化能力及絕對值不等式的性質,考查計算能力,屬于中檔題.19、見解析【解析】
(1)當時,函數,其定義域為,則,設,,易知函數在上單調遞增,且,所以當時,,即;當時,,即,所以函數在上單調遞減,在上單調遞增,所以函數在處取得極小值,為,無極大值.(2)由題可得函數的定義域為,,設,,顯然函數在上單調遞增,當時,,,所以函數在內有一個零點,所以函數有且僅有一個零點;當時,,,所以函數有且僅有一個零點,所以函數有且僅有一個零點;當時,,,因為,所以,,又,所以函數在內有一個零點,所以函數有且僅有一個零點.綜上,函數有且僅有一個零點.20、,;.【解析】
由,公差,有,,成等比數列,所以,解得.進而求出數列,的通項公式;當時,由,所以,當時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數列,所以,解得.所以數列的通項公式.數列的公比,其通項公式.當時,由,所以.當時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.【點睛】本題主要考查等差數列和等比數列的概念,通項公式,前項和公式的應用等基礎知識;考查運算求解能力,方程思想,分類討論思想,應用意識,屬于中檔題.21、(1)(2)11【解析】
(1)利用二倍角公式將式子化簡成,再利用兩角和與差的余弦公式即可求解.(2)利用余弦定理可得,再將平方,利用向量數量積可得,從而可求周長.【詳解】由題解得,所以由余弦定理,,再由解得:所以故的周長為【點睛】本題主要考查了余弦定理解三角形、兩角和與差的余弦公式、需熟記公式,屬于基礎題.22、(1),(2)【解析】分析:(1)根據題的條件,得到對應的橢圓的上頂點,即可以求得橢圓中相應的參數,結合橢圓的離心率的大小,求得相應的參數,從而求得橢圓的方程;(2)設出一條直線的方程,與橢圓的方程聯立,消元,利用求根公式求得對應點的坐標,進一步求得向量的坐標,將S表示為關于k的函數關系,從眼角函數的角度去求最值,從而求得結果.詳解:(Ⅰ)依題意得對:,,得:;同理:.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 事故新車保險合同樣本
- 關于策劃合同標準文本
- 產品電商銷售合同樣本
- 2025簡化版房屋買賣合同樣本
- 顧客反饋的總結與產品改進計劃
- 借款受托支付合同標準文本
- 農用機器買賣合同樣本
- 關于購買商鋪合同樣本
- led景觀工程合同標準文本
- 養鴨合伙協議合同樣本
- 市政道路及設施零星養護服務技術方案(技術標)
- 釘釘oa使用流程
- CQI-8分層過程審核指南(附全套表格)
- 搞好班組安全管理工作
- 生物醫學體系的確立與發展
- 江蘇省南京市秦淮區2023-2024學年七年級下學期期中數學試卷(含答案)
- ISO27001:2022信息安全管理手冊+全套程序文件+表單
- 勞動節英文介紹節日由來文化風俗勞動名言課件
- 數字金融與經濟高質量發展:理論分析與實證檢驗
- 《免疫學檢驗》課程標準(含課程思政)
- 網絡安全的前沿技術與趨勢
評論
0/150
提交評論