




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省六地市部分學校2025屆高一數學第二學期期末監測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若f(x)=af1(x)bf2(x)a,b∈R已知g1(x)=(-x2+12x-20)12生成函數g(x),已知g(4)=2(6-3),A.1 B.4 C.6 D.92.在中,,則這個三角形的形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.等腰三角形3.若角的終邊與單位圓交于點,則()A. B. C. D.不存在4.的內角,,的對邊分別為,,.已知,則()A. B. C. D.5.已知直線l和平面,若直線l在空間中任意放置,則在平面內總有直線和A.垂直 B.平行 C.異面 D.相交6.在同一直角坐標系中,函數且的圖象可能是()A. B.C. D.7.已知,則().A. B. C. D.8.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.下列命題中不正確的是()A.平面∥平面,一條直線平行于平面,則一定平行于平面B.平面∥平面,則內的任意一條直線都平行于平面C.一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行D.分別在兩個平行平面內的兩條直線只能是平行直線或異面直線10.下圖所示的幾何體是由一個圓柱中挖去一個以圓柱的上底面為底面,下底面圓心為質點的圓錐面得到,現用一個垂直于底面的平面去截該幾何體、則截面圖形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)二、填空題:本大題共6小題,每小題5分,共30分。11.數列滿足,則數列的前6項和為_______.12.方程在區間上的解為___________.13.過點作圓的兩條切線,切點分別為,則=.14.直線和將單位圓分成長度相等的四段弧,則________.15.直線與圓的位置關系是______.16.在平面直角坐標系中,角的頂點在原點,始邊與軸的正半軸重合,終邊過點,則______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知為常數且均不為零,數列的通項公式為并且成等差數列,成等比數列.(1)求的值;(2)設是數列前項的和,求使得不等式成立的最小正整數.18.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.19.如圖,在直三棱柱中,,為的中點,為的中點.(1)求證:平面;(2)求證:.20.在中,角,,所對的邊為,,,向量與向量共線.(1)若,求的值;(2)若為邊上的一點,且,若為的角平分線,求的取值范圍.21.在銳角中,,,分別為內角,,所對的邊,且滿足.(1)求角的大小;(2)若,,求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據變換T(m,n)可生成函數g(x)=mg2(x)-ng1(x)=m(-x2+10x)1【詳解】由題意可知g(x)=mg又g(4)=2(6-解得m=n=1,所以g(x)=又g(x)=10-x因為y=1x+x-2在x∈[2,10]上單調遞減且為正值,y=10-x在x∈[2,10]上單調遞減且為正值,所以g(x)=10-x(【點睛】本題主要考查了函數的單調性,利用單調性求函數的最大值,涉及創設新情景及函數式的變形,屬于難題2、B【解析】解:3、B【解析】
由三角函數的定義可得:,得解.【詳解】解:在單位圓中,,故選B.【點睛】本題考查了三角函數的定義,屬基礎題.4、A【解析】
由正弦定理,整理得到,即可求解,得到答案.【詳解】在中,因為,由正弦定理可得,因為,則,所以,即,又因為,則,故選A.【點睛】本題主要考查了正弦定理的應用,其中解答中熟練應用正弦定理的邊角互化,以及特殊角的三角函數是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、A【解析】
本題可以從直線與平面的位置關系入手:直線與平面的位置關系可以分為三種:直線在平面內、直線與平面相交、直線與平面平行,在這三種情況下再討論平面中的直線與已知直線的關系,通過比較可知:每種情況都有可能垂直.【詳解】當直線l與平面相交時,平面內的任意一條直線與直線l的關系只有兩種:異面、相交,此時就不可能平行了,故B錯.當直線l與平面平行時,平面內的任意一條直線與直線l的關系只有兩種:異面、平行,此時就不可能相交了,故D錯.當直線a在平面內時,平面內的任意一條直線與直線l的關系只有兩種:平行、相交,此時就不可能異面了,故C錯.不管直線l與平面的位置關系相交、平行,還是在平面內,都可以在平面內找到一條直線與直線垂直,因為直線在異面與相交時都包括垂直的情況,故A正確.故選:A.【點睛】本題主要考查了空間中直線與直線之間的位置關系,空間中直線與平面之間的位置關系,考查空間想象能力和思維能力.6、D【解析】
本題通過討論的不同取值情況,分別討論本題指數函數、對數函數的圖象和,結合選項,判斷得出正確結論.題目不難,注重重要知識、基礎知識、邏輯推理能力的考查.【詳解】當時,函數過定點且單調遞減,則函數過定點且單調遞增,函數過定點且單調遞減,D選項符合;當時,函數過定點且單調遞增,則函數過定點且單調遞減,函數過定點且單調遞增,各選項均不符合.綜上,選D.【點睛】易出現的錯誤有,一是指數函數、對數函數的圖象和性質掌握不熟,導致判斷失誤;二是不能通過討論的不同取值范圍,認識函數的單調性.7、C【解析】
分子分母同時除以,利用同角三角函數的商關系化簡求值即可.【詳解】因為,所以,于是有,故本題選C.【點睛】本題考查了同角三角函數的商關系,考查了數學運算能力.8、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.9、A【解析】
逐一考查所給的選項是否正確即可.【詳解】逐一考查所給的選項:A.平面∥平面,一條直線平行于平面,可能a在平面內或與相交,不一定平行于平面,題中說法錯誤;B.由面面平行的定義可知:若平面∥平面,則內的任意一條直線都平行于平面,題中說法正確;C.由面面平行的判定定理可得:若一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行,題中說法正確;D.分別在兩個平行平面內的兩條直線只能是平行直線或異面直線,不可能相交,題中說法正確.本題選擇A選項.【點睛】本題考查了空間幾何體的線面位置關系判定與證明:(1)對于異面直線的判定要熟記異面直線的概念:把既不平行也不相交的兩條直線稱為異面直線;(2)對于線面位置關系的判定中,熟記線面平行與垂直、面面平行與垂直的定理是關鍵.10、D【解析】
根據圓錐曲線的定義和圓錐的幾何特征,分截面過旋轉軸時和截面不過旋轉軸時兩種情況,分析截面圖形的形狀,最后綜合討論結果,可得答案.【詳解】根據題意,當截面過旋轉軸時,圓錐的軸截面為等腰三角形,此時(1)符合條件;當截面不過旋轉軸時,圓錐的軸截面為雙曲線的一支,此時(4)符合條件;故截面圖形可能是(1)(4);故選:D.【點睛】本題考查的知識點是旋轉體,圓錐曲線的定義,關鍵是掌握圓柱與圓錐的幾何特征.二、填空題:本大題共6小題,每小題5分,共30分。11、84【解析】
根據分組求和法以及等差數列與等比數列前n項和公式求解.【詳解】因為,所以.【點睛】本題考查分組求和法以及等差數列與等比數列前n項和公式,考查基本分析求解能力,屬基礎題.12、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點】二倍角公式及三角函數求值【名師點睛】已知三角函數值求角,基本思路是通過化簡,得到角的某種三角函數值,結合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.13、【解析】
如圖,連接,在直角三角形中,所以,,,故.考點:1.直線與圓的位置關系;2.平面向量的數量積.14、0【解析】
將單位圓分成長度相等的四段弧,每段弧對應的圓周角為,計算得到答案.【詳解】如圖所示:將單位圓分成長度相等的四段弧,每段弧對應的圓周角為或故答案為0【點睛】本題考查了直線和圓相交問題,判斷每段弧對應的圓周角為是解題的關鍵.15、相交【解析】
由直線系方程可得直線過定點,進而可得點在圓內部,即可得到位置關系.【詳解】化直線方程為,令,解得,所以直線過定點,又圓的圓心坐標為,半徑,而,所以點在圓內部,故直線與圓的位置關系是相交.故答案為:相交.【點睛】本題考查直線與圓位置關系的判斷,考查直線系方程的應用,屬于基礎題.16、-1【解析】
根據三角函數的定義求得,再代入的展開式進行求值.【詳解】角終邊過點,終邊在第三象限,根據三角函數的定義知:,【點睛】考查三角函數的定義及三角恒等變換,在變換過程中要注意符號的正負.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由,可得,,,.根據、、成等差數列,、、成等比數列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分別利用等差數列與等比數列的求和公式即可得出.【詳解】(1),,,,.,,成等差數列,,,成等比數列.,,,,,.聯立解得:,.(2)由(1)可得:,,由,解得..【點睛】本題考查等差數列與等比數列的通項公式與求和公式及其性質、分類討論方法、不等式的解法,考查推理能力與計算能力,屬于中檔題.18、(1)【解析】
(1)利用同角的平方關系求cos(α-β)的值;(2)利用求出,再求的值.【詳解】(1)因為,所以cos(α-β).(2)因為cosα=,所以,所以,因為β∈(0,),所以.【點睛】本題主要考查同角的三角函數的關系求值,考查差角的余弦,意在考查學生對這些知識的理解掌握水平,屬于基礎題.19、(1)見解析(2)見解析【解析】
(1)連、相交于點,證明四邊形為平行四邊形,得到,證明平面(2)證明平面推出【詳解】證明:(1)如圖,連、相交于點,,,,,,,∴四邊形為平行四邊形,,平面,平面,平面,…(2)連因為三棱柱是直三棱柱,底面,平面,,,,,,平面,平面,.【點睛】本題考查了線面平行,線線垂直,線面垂直,意在考查學生的空間想象能力.20、(1)32;(2)【解析】
由兩向量坐標以及向量共線,結合正弦定理,化簡可得(1)由,,代入原式化簡,即可得到答案;(2)在和在中,利用正弦定理,化簡可得,,代入原式,化簡即可得到,利用三角形的內角范圍結合三角函數的值域,即可求出的取值范圍.【詳解】向量與向量共線所以,由正弦定理得:.即,由于在中,,則,所以,由于,則.(1),.(2)因為,為的角平分線,所以,在中,,因為,所以,所以在中,,因為,所以,所以,則,因為,所以,所以,即的取值范圍為.【點睛】本題主要考查向量共線、正弦定理、二倍角公式、三角函數的值域等知識,考查學生轉化與求解能力,考查學生基本的計算能力,有一定綜合性.21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 太陽能并網發電技術考核試卷
- 海底工程作業平臺的穩定性分析考核試卷
- 毛條染色工藝與設備操作考核試卷
- 畜牧良種繁殖與農業科技創新政策考核試卷
- 遼寧師范大學海華學院《內科學A》2023-2024學年第二學期期末試卷
- 南京傳媒學院《Spark大數據技術與應用》2023-2024學年第二學期期末試卷
- 遼寧師范大學海華學院《演出經營與管理》2023-2024學年第二學期期末試卷
- 信陽師范大學《心理測量學》2023-2024學年第二學期期末試卷
- 三明市尤溪縣2025屆數學四下期末學業水平測試模擬試題含解析
- 四川文軒職業學院《生物力學研究方法》2023-2024學年第二學期期末試卷
- 《服務營銷雙主動》課件
- 采油工程試題及答案
- 小學科學閱讀試題及答案
- 找最小公倍數案例北師大五年級下冊數學
- 基因組學在臨床的應用試題及答案
- 公司法公章管理制度
- 大模型關鍵技術與應用
- DB51T 1466-2012 馬尾松二元立木材積表、單木出材率表
- 人教版語文六年級下冊《第五單元》大單元整體教學設計2022課標
- 《教育向美而生-》讀書分享課件
- 中國法律史-第三次平時作業-國開-參考資料
評論
0/150
提交評論