2022年河北省邯鄲市數學高三上期末教學質量檢測模擬試題含解析_第1頁
2022年河北省邯鄲市數學高三上期末教學質量檢測模擬試題含解析_第2頁
2022年河北省邯鄲市數學高三上期末教學質量檢測模擬試題含解析_第3頁
2022年河北省邯鄲市數學高三上期末教學質量檢測模擬試題含解析_第4頁
2022年河北省邯鄲市數學高三上期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正方形的邊長為,是正方形內部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.2.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.3.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.4.設則以線段為直徑的圓的方程是()A. B.C. D.5.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.6.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.7.若復數(為虛數單位),則()A. B. C. D.8.已知為虛數單位,復數滿足,則復數在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知,且,則的值為()A. B. C. D.10.甲、乙、丙、丁四位同學利用暑假游玩某風景名勝大峽谷,四人各自去景區的百里絕壁、千丈瀑布、原始森林、遠古村寨四大景點中的一個,每個景點去一人.已知:①甲不在遠古村寨,也不在百里絕壁;②乙不在原始森林,也不在遠古村寨;③“丙在遠古村寨”是“甲在原始森林”的充分條件;④丁不在百里絕壁,也不在遠古村寨.若以上語句都正確,則游玩千丈瀑布景點的同學是()A.甲 B.乙 C.丙 D.丁11.已知定義在上的函數滿足,且當時,.設在上的最大值為(),且數列的前項的和為.若對于任意正整數不等式恒成立,則實數的取值范圍為()A. B. C. D.12.如圖所示,三國時代數學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.20 B.27 C.54 D.64二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的各項均為正數,記為數列的前項和,若,,則______.14.某市高三理科學生有名,在一次調研測試中,數學成績服從正態分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數為__________.15.一個算法的偽代碼如圖所示,執行此算法,最后輸出的T的值為________.16.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的長半軸長為,點(為橢圓的離心率)在橢圓上.(1)求橢圓的標準方程;(2)如圖,為直線上任一點,過點橢圓上點處的切線為,,切點分別,,直線與直線,分別交于,兩點,點,的縱坐標分別為,,求的值.18.(12分)設數陣,其中、、、.設,其中,且.定義變換為“對于數陣的每一行,若其中有或,則將這一行中每個數都乘以;若其中沒有且沒有,則這一行中所有數均保持不變”(、、、).表示“將經過變換得到,再將經過變換得到、,以此類推,最后將經過變換得到”,記數陣中四個數的和為.(1)若,寫出經過變換后得到的數陣;(2)若,,求的值;(3)對任意確定的一個數陣,證明:的所有可能取值的和不超過.19.(12分)如圖,正方形是某城市的一個區域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統一設置如下:先直行綠燈30秒,再左轉綠燈30秒,然后是紅燈1分鐘,右轉不受紅綠燈影響,這樣獨立的循環運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優先直行,求小明騎行途中恰好經過處,且全程不等紅綠燈的概率;(3)請你根據每條可能的路線中等紅綠燈的次數的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?20.(12分)已知數列,,數列滿足,n.(1)若,,求數列的前2n項和;(2)若數列為等差數列,且對任意n,恒成立.①當數列為等差數列時,求證:數列,的公差相等;②數列能否為等比數列?若能,請寫出所有滿足條件的數列;若不能,請說明理由.21.(12分)已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.(1)求橢圓的方程;(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.22.(10分)已知函數.(1)求不等式的解集;(2)若正數、滿足,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

分別以直線為軸,直線為軸建立平面直角坐標系,設,根據,可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數量積的坐標表示,屬于基礎題.2、A【解析】

畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.3、D【解析】

設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.4、A【解析】

計算的中點坐標為,圓半徑為,得到圓方程.【詳解】的中點坐標為:,圓半徑為,圓方程為.故選:.【點睛】本題考查了圓的標準方程,意在考查學生的計算能力.5、B【解析】

根據函數單調性逐項判斷即可【詳解】對A,由正弦函數的單調性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數,且a>b,所以ca>cb,正確對C,因為y=xc為增函數,故,錯誤;對D,因為在為減函數,故,錯誤故選B.【點睛】本題考查了不等式的基本性質以及指數函數的單調性,屬基礎題.6、D【解析】

以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點睛】本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數學運算的能力,屬于中檔題.7、B【解析】

根據復數的除法法則計算,由共軛復數的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數的除法計算,共軛復數的概念,屬于容易題.8、B【解析】

求出復數,得出其對應點的坐標,確定所在象限.【詳解】由題意,對應點坐標為,在第二象限.故選:B.【點睛】本題考查復數的幾何意義,考查復數的除法運算,屬于基礎題.9、A【解析】

由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.10、D【解析】

根據演繹推理進行判斷.【詳解】由①②④可知甲乙丁都不在遠古村寨,必有丙同學去了遠古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景點的同學是丁.故選:D.【點睛】本題考查演繹推理,掌握演繹推理的定義是解題基礎.11、C【解析】

由已知先求出,即,進一步可得,再將所求問題轉化為對于任意正整數恒成立,設,只需找到數列的最大值即可.【詳解】當時,則,,所以,,顯然當時,,故,,若對于任意正整數不等式恒成立,即對于任意正整數恒成立,即對于任意正整數恒成立,設,,令,解得,令,解得,考慮到,故有當時,單調遞增,當時,有單調遞減,故數列的最大值為,所以.故選:C.【點睛】本題考查數列中的不等式恒成立問題,涉及到求函數解析、等比數列前n項和、數列單調性的判斷等知識,是一道較為綜合的數列題.12、B【解析】

設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數大約為,利用概率模擬列方程即可求解。【詳解】設大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、63【解析】

對進行化簡,可得,再根據等比數列前項和公式進行求解即可【詳解】由數列為首項為,公比的等比數列,所以63【點睛】本題考查等比數列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質還是圍繞等差和等比的基本性質14、【解析】

由題意結合正態分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態分布曲線,屬于基礎題.15、【解析】

由程序中的變量、各語句的作用,結合流程圖所給的順序,模擬程序的運行,即可得到答案.【詳解】根據題中的程序框圖可得:,執行循環體,,不滿足條件,執行循環體,,此時,滿足條件,退出循環,輸出的值為.故答案為:【點睛】本題主要考查了程序和算法,依次寫出每次循環得到的,的值是解題的關鍵,屬于基本知識的考查.16、【解析】

先由題意設向量的坐標,再結合平面向量數量積的運算及不等式可得解.【詳解】由是單位向量.若,,設,則,,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,,故答案為:,.【點睛】本題考查了平面向量數量積的坐標運算,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)因為點在橢圓上,所以,然后,利用,,得出,進而求解即可(2)設點的坐標為,直線的方程為,直線的方程為,分別聯立方程:和,利用韋達定理,再利用,,即可求出的值【詳解】(1)由橢圓的長半軸長為,得.因為點在橢圓上,所以.又因為,,所以,所以(舍)或.故橢圓的標準方程為.(2)設點的坐標為,直線的方程為,直線的方程為.據得.據題意,得,得,同理,得,所以.又可求,得,,所以.【點睛】本題考查橢圓標準方程的求解以及聯立方程求定值的問題,聯立方程求定值的關鍵在于利用韋達定理進行消參,屬于中檔題18、(1);(2);(3)見解析.【解析】

(1)由,能求出經過變換后得到的數陣;(2)由,,求出數陣經過變化后的矩陣,進而可求得的值;(3)分和兩種情況討論,推導出變換后數陣的第一行和第二行的數字之和,由此能證明的所有可能取值的和不超過.【詳解】(1),經過變換后得到的數陣;(2)經變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個,經過變換后第一行均變為、;含有且不含的子集共個,經過變換后第一行均變為、;同時含有和的子集共個,經過變換后第一行仍為、;不含也不含的子集共個,經過變換后第一行仍為、.所以經過變換后所有的第一行的所有數的和為.若,則的所有非空子集中,含有的子集共個,經過變換后第一行均變為、;不含有的子集共個,經過變換后第一行仍為、.所以經過變換后所有的第一行的所有數的和為.同理,經過變換后所有的第二行的所有數的和為.所以的所有可能取值的和為,又因為、、、,所以的所有可能取值的和不超過.【點睛】本題考查數陣變換的求法,考查數陣中四個數的和不超過的證明,考查類比推理、數陣變換等基礎知識,考查運算求解能力,綜合性強,難度大.19、(1)6種;(2);(3).【解析】

(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經過處,共有4條路線,即,,,,分別對4條路線進行分析計算概率;(3)分別對小明上學的6條路線進行分析求均值,均值越大的應避免.【詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數為條.(2)小明途中恰好經過處,共有4條路線:①當走時,全程不等紅綠燈的概率;②當走時,全程不等紅綠燈的概率;③當走時,全程不等紅綠燈的概率;④當走時,全程不等紅綠燈的概率.所以途中恰好經過處,且全程不等信號燈的概率.(3)設以下第條的路線等信號燈的次數為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學的最佳路線為;應盡量避開.【點睛】本題考查概率在實際生活中的綜合應用問題,考查學生邏輯推理與運算能力,是一道有一定難度的題.20、(1)(2)①見解析②數列不能為等比數列,見解析【解析】

(1)根據數列通項公式的特點,奇數項為等差數列,偶數項為等比數列,選用分組求和的方法進行求解;(2)①設數列的公差為,數列的公差為,當n為奇數時,得出;當n為偶數時,得出,從而可證數列,的公差相等;②利用反證法,先假設可以為等比數列,結合題意得出矛盾,進而得出數列不能為等比數列.【詳解】(1)因為,,所以,且,由題意可知,數列是以1為首項,2為公差的等差數列,數列是首項和公比均為4的等比數列,所以;(2)①證明:設數列的公差為,數列的公差為,當n為奇數時,,若,則當時,,即,與題意不符,所以,當n為偶數時,,,若,則當時,,即,與題意不符,所以,綜上,,原命題得證;②假設可以為等比數列,設公比為q,因為,所以,所以,,因為當時,,所以當n為偶數,且時,,即當n為偶數,且時,不成立,與題意矛盾,所以數列不能為等比數列.【點睛】本題主要考查數列的求和及數列的綜合,數列求和時一般是結合通項公式的特征選取合適的求和方法,數列綜合題要回歸基本量,充分挖掘題目已知信息,細思細算,本題綜合性較強,難度較大

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論