




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川蓉城名校聯盟2025屆高一下數學期末質量跟蹤監視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將的圖象向左平移個單位長度,再向下平移個單位長度得到的圖象,若,則()A. B. C. D.2.不等式的解集是A.或 B.或C. D.3.兩直角邊分別為1,的直角三角形繞其斜邊所在的直線旋轉一周,得到的幾何體的表面積是()A. B.3π C. D.4.在數列中,若,,,設數列滿足,則的前項和為()A. B. C. D.5.在平行四邊形ABCD中,,,E是CD的中點,則()A.2 B.-3 C.4 D.66.在中,角對應的邊分別是,已知,的面積為,則外接圓的直徑為()A. B. C. D.7.設是兩條不同的直線,是兩個不同的平面,則下列命題中正確的是()A.若,則B.若,則C.若,則D.若,則8.某市電視臺為調查節目收視率,想從全市3個縣按人口數用分層抽樣的方法抽取一個容量為的樣本,已知3個縣人口數之比為,如果人口最多的一個縣抽出60人,那么這個樣本的容量等于()A.96 B.120 C.180 D.2409.執行如圖所示的程序框圖,令,若,則實數a的取值范圍是A. B.C. D.10.下列命題中正確的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則___________.12.已知,若方程的解集為,則__________.13.計算:=_______________.14.等比數列的首項為,公比為,記,則數列的最大項是第___________項.15.若函數是奇函數,其中,則__________.16.已知函數的圖象如圖所示,則不等式的解集為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知分別是數列的前項和,且.(1)求數列與的通項公式;(2)求數列的前項和.18.若在定義域內存在實數,使得成立,則稱函數有“和一點”.(1)函數是否有“和一點”?請說明理由;(2)若函數有“和一點”,求實數的取值范圍;(3)求證:有“和一點”.19.已知點.(1)求中邊上的高所在直線的方程;(2)求過三點的圓的方程.20.如圖,在平面直角坐標系中,單位圓上存在兩點,滿足均與軸垂直,設與的面積之和記為.若,求的值;若對任意的,存在,使得成立,且實數使得數列為遞增數列,其中求實數的取值范圍.21.設數列的前項和為,滿足,且,數列滿足,對任意的,且成等比數列,其中.(1)求數列的通項公式(2)記,證明:當且時,
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】因為,所以,因此,選D.點睛:三角函數的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言.2、C【解析】
把原不等式化簡為,即可求解不等式的解集.【詳解】由不等式即,即,得,則不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中把不等式對應的一元二次方程能夠因式分解,即能夠轉化為幾個代數式的乘積形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、A【解析】
由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,根據圓錐的側面積計算公式可得.【詳解】由題得直角三角形的斜邊為2,則斜邊上的高為.由題知該幾何體為兩個倒立的圓錐底對底組合在一起,其中,故選.【點睛】本題考查旋轉體的定義,圓錐的表面積的計算,屬于基礎題.4、D【解析】
利用等差中項法得知數列為等差數列,根據已知條件可求出等差數列的首項與公差,由此可得出數列的通項公式,利用對數與指數的互化可得出數列的通項公式,并得知數列為等比數列,利用等比數列前項和公式可求出.【詳解】由可得,可知是首項為,公差為的等差數列,所以,即.由,可得,所以,數列是以為首項,以為公比的等比數列,因此,數列的前項和為,故選D.【點睛】本題考查利用等差中項法判斷等差數列,同時也考查了對數與指數的互化以及等比數列的求和公式,解題的關鍵在于結合已知條件確定數列的類型,并求出數列的通項公式,考查運算求解能力,屬于中等題.5、A【解析】
由平面向量的線性運算可得,再結合向量的數量積運算即可得解.【詳解】解:由,,所以,,,則,故選:A.【點睛】本題考查了平面向量的線性運算,重點考查了向量的數量積運算,屬中檔題.6、D【解析】
根據三角形面積公式求得;利用余弦定理求得;根據正弦定理求得結果.【詳解】由題意得:,解得:由余弦定理得:由正弦定理得外接圓的直徑為:本題正確選項:【點睛】本題考查正弦定理、余弦定理、三角形面積公式的綜合應用問題,考查學生對于基礎公式和定理的掌握情況.7、D【解析】
根據線線、線面和面面平行和垂直有關定理,對選項逐一分析,由此得出正確選項.【詳解】對于A選項,兩個平面垂直,一個平面內的直線不一定垂直另一個平面內的直線,故A選項錯誤.對于B選項,兩個平面平行,一個平面內的直線和另一個平面內的直線不一定平行,故B選項錯誤.對于C選項,兩條直線都跟同一個平面平行,它們可能相交、異面或者平行,故C選項錯誤.對于D選項,根據平行的傳遞性以及面面垂直的判定定理可知,D選項命題正確.綜上所述,本小題選D.【點睛】本小題主要考查空間線線、線面和面面平行和垂直有關定理的運用,考查邏輯推理能力,屬于基礎題.8、B【解析】
根據分層抽樣的性質,直接列式求解即可.【詳解】因為3個縣人口數之比為,而人口最多的一個縣抽出60人,則根據分層抽樣的性質,有,故選:B.【點睛】本題考查分層抽樣,解題關鍵是明確分層抽樣是按比例進行抽樣.9、D【解析】該程序的功能是計算并輸出分段函數.當時,,解得;當時,,解得;當時,,無解.綜上,,則實數a的取值范圍是.故選D.10、D【解析】
根據向量的加減法的幾何意義以及向量數乘的定義即可判斷.【詳解】,,,,故選D.【點睛】本題主要考查向量的加減法的幾何意義以及向量數乘的定義的應用.二、填空題:本大題共6小題,每小題5分,共30分。11、;【解析】
把已知式平方可求得,從而得,再由平方關系可求得.【詳解】∵,∴,即,∴,即,∴.故答案為.【點睛】本題考查同角三角函數關系,考查正弦的二倍角公式,在用平方關系求值時要注意結果可能有正負,因此要判斷是否只取一個值.12、【解析】
將利用輔助角公式化簡,可得出的值.【詳解】,其中,,因此,,故答案為.【點睛】本題考查利用輔助角公式化簡計算,化簡時要熟悉輔助角變形的基本步驟,考查運算求解能力,屬于中等題.13、【解析】試題分析:考點:兩角和的正切公式點評:本題主要考查兩角和的正切公式變形的運用,抓住和角是特殊角,是解題的關鍵.14、【解析】
求得,則可將問題轉化為求使得最大且使得為偶數的正整數的值,利用二次函數的基本性質求解即可.【詳解】由等比數列的通項公式可得,,則問題轉化為求使得最大且使得為偶數的正整數的值,,當時,取得最大值,此時為偶數.因此,的最大項是第項.故答案為:.【點睛】本題考查等比數列前項積最值的計算,將問題進行轉化是解題的關鍵,考查分析問題和解決問題的能力,屬于中等題.15、【解析】
定義域上的奇函數,則【詳解】函數是奇函數,所以,又,則所以填【點睛】定義域上的奇函數,我們可以直接搭建方程,若定義域中則不能直接代指.16、【解析】
根據函數圖象以及不等式的等價關系即可.【詳解】解:不等式等價為或,
則,或,
故不等式的解集是.
故答案為:.【點睛】本題主要考查不等式的求解,根據不等式的等價性結合圖象之間的關系是解決本題的關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,(2)【解析】
(1)分別求出和時的,,再檢驗即可.(2)利用錯位相減法即可求出數列的前項和【詳解】(1)當時,,當時,.檢驗:當時,,所以.因為,所以.當時,,即,當時,整理得到:.所以數列是以首項為,公差為的等差數列.所以,即.(2)…………①,……②,①②得:……,,.【點睛】本題第一問考查由數列前項和求數列的通項公式,第二問考查數列求和中的錯位相減法,屬于難題.18、(1)不存在;(2)a>﹣2;(3)見解析【解析】
(1)解方程即可判斷;(2)由題轉化為2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分離參數a=2x﹣2求值域即可求解;(3)由題意判斷方程cos(x+1)=cosx+cos1是否有解即可.【詳解】(1)若函數有“和一點”,則不合題意故不存在(2)若函數f(x)=2x+a+2x有“和一點”.則方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)證明:令f(x+1)=f(x)+f(1),即cos(x+1)=cosx+cos1,即cosxcos1﹣sinxsin1﹣cosx=cos1,即(cos1﹣1)cosx﹣sinxsin1=cos1,故存在θ,故cos(x+θ)=cos1,即cos(x+θ)=cos1,即cos(x+θ),∵cos21﹣(2﹣2cos1)=cos21+2cos1﹣2<cos22cos22<0,故01,故方程cos(x+1)=cosx+cos1有解,即f(x)=cosx函數有“和一點”.【點睛】本題考查了新定義及分類討論的思想應用,同時考查了三角函數的化簡與應用,轉化為有解問題是關鍵,是中檔題19、(1);(2)【解析】
(1)邊上的高所在直線方程斜率與邊所在直線的方程斜率之積為-1,可求出高所在直線的斜率,代入即可求出高所在直線的方程。(2)設圓的一般方程為,代入即可求得圓的方程?!驹斀狻浚?)因為所在直線的斜率為,所以邊上的高所在直線的斜率為所以邊上的高所在直線的方程為,即(2)設所求圓的方程為因為在所求的圓上,故有所以所求圓的方程為【點睛】(1)求直線方程一般通過直線點斜式方程求解,即知道點和斜率。(2)圓的一般方程為,三個未知數三個點代入即可。20、(1)或(2)【解析】
(1)運用三角形的面積公式和三角函數的和差公式,以及特殊角的函數值,可得所求角;(2)由正弦函數的值域可得的最大值,再由基本不等式可得的最大值,可得的范圍,再由數列的單調性,討論的范圍,即可得到的取值范圍.【詳解】依題意,可得,由,得,又,所以.由得因為,所以,所以,當時,,(當且僅當時,等號成立)又因為對任意,存在,使得成立,所以,即,解得,因為數列為遞增數列,且,所以,從而,又,所以,從而,又,①當時,,從而,此時與同號,又,即,②當時,由于趨向于正無窮大時,與趨向于相等,從而與趨向于相等,即存在正整數,使,從而,此時與異號,與數列為遞增數列矛盾,綜上,實數的取值范圍為.【點睛】本題主要考查了三角函數的定義,三角函數的恒等變換,以及不等式恒成立,存在性問題解法和數列的單調性的判斷和運用,試題綜合性強,屬于難題,著重考查了推理與運算能力,以及分析問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45457.2-2025重型燃氣輪機葉片無損檢測第2部分:視覺檢測
- 疫苗接種與群體免疫動力學考核試卷
- 管道工程社會責任報告與評估考核試卷
- 禮儀用品行業服務品質管理考核試卷
- 組織文化與員工參與度考核試卷
- 原動設備制造企業的戰略管理與規劃考核試卷
- 租賃設備的市場調研方法與技巧考核試卷
- 禮儀用品行業市場風險防范考核試卷
- 稀土金屬壓延加工的智能化制造趨勢分析考核試卷
- 天津農學院《發動機原理》2023-2024學年第二學期期末試卷
- 慢性阻塞性肺疾?。–OPD)課件
- DB12 596.1-2015 道路交通智能管理系統設施設置規范 第1部分:設施設置要求
- 安踏組織架構分析
- 第六章 納米復合材料
- 萬能外圓磨床作業指導書
- SAP-BASIS-常維護手冊
- 乙炔氣柜施工方案
- 兒童故事小壁虎借尾巴ppt課件
- 《春日》PPT課件
- 屋頂分布式光伏發電項目資金申請報告寫作模板
- 公路路基土建工程項目拌合站建設方案詳細
評論
0/150
提交評論