




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省南昌市第一中學2025屆高一數學第二學期期末經典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在ΔABC中,角A,B,C所對的邊分別為a,b,c,若A=π3,B=π4,A.23 B.2 C.3 D.2.經過原點且傾斜角為的直線被圓C:截得的弦長是,則圓在軸下方部分與軸圍成的圖形的面積等于()A. B. C. D.3.古代數學著作《九章算術》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據上題的已知條件,若要使織布的總尺數不少于30,該女子所需的天數至少為()A.7 B.8 C.9 D.104.在中,,則等于()A. B. C. D.5.過點A(3,3)且垂直于直線的直線方程為A. B. C. D.6.過點作圓的切線,且直線與平行,則與間的距離是()A. B. C. D.7.已知,,,若不等式恒成立,則t的最大值為()A.4 B.6 C.8 D.98.若,則三個數的大小關系是()A. B.C. D.9.若滿足約束條件,則的最小值是()A.0 B. C. D.310.若,且,恒成立,則實數的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某單位共有200名職工參加了50公里徒步活動,其中青年職工與老年職工的人數比為,中年職工有24人,現采取分層抽樣的方法抽取50人參加對本次活動滿意度的調查,那么應抽取老年職工的人數為________人.12.設向量滿足,,,.若,則的最大值是________.13.方程的解集是___________14.已知一組數據6,7,8,8,9,10,則該組數據的方差是____.15.已知向量(1,x2),(﹣2,y2﹣2),若向量,共線,則xy的最大值為_____.16.點關于直線的對稱點的坐標為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.等差數列中,公差,,.(1)求的通項公式;(2)若,求數列的前項和.18.在平面直角坐標系下,已知圓O:,直線l:()與圓O相交于A,B兩點,且.(1)求直線l的方程;(2)若點E,F分別是圓O與x軸的左、右兩個交點,點D滿足,點M是圓O上任意一點,點N在線段上,且存在常數使得,求點N到直線l距離的最小值.19.已知向量.(1)求與的夾角的余弦值;(2)若向量與垂直,求的值.20.直線的方程為.(1)若在兩坐標軸上的截距相等,求的值;(2)若不經過第二象限,求實數的取值范圍.21.已知數列的前項和為,,.(1)求數列的通項公式;(2)在數列中,,其前項和為,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
利用正弦定理asinA=【詳解】在ΔABC中,由正弦定理得asinA=故選:A.【點睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎題。2、A【解析】
由已知利用垂徑定理求得,得到圓的半徑,畫出圖形,由扇形面積減去三角形面積求解.【詳解】解:直線方程為,圓的圓心坐標為,半徑為.圓心到直線的距離.則,解得.圓的圓心坐標為,半徑為1.如圖,,則,.,,圓在軸下方部分與軸圍成的圖形的面積等于.故選:.【點睛】本題考查直線與圓位置關系的應用,考查扇形面積的求法,考查計算能力,屬于中檔題.3、B【解析】試題分析:設該女子第一天織布尺,則,解得,所以前天織布的尺數為,由,得,解得的最小值為,故選B.考點:等比數列的應用.4、D【解析】
先根據向量的夾角公式計算出的值,然后再根據同角的三角函數的基本關系即可求解出的值.【詳解】因為,所以,所以,所以.故選:D.【點睛】本題考查坐標形式下向量的夾角計算,難度較易.注意:的夾角并不是,而應是的補角.5、D【解析】過點A(3,3)且垂直于直線的直線斜率為,代入過的點得到.故答案為D.6、D【解析】由題意知點在圓C上,圓心坐標為,所以,故切線的斜率為,所以切線方程為,即.因為直線l與直線平行,所以,解得,所以直線的方程是-4x+3y-8=0,即4x-3y+8=0.所以直線與直線l間的距離為.選D.7、C【解析】
因為不等式恒成立,所以只求得的最小值即可,結合,用“1”的代換求其最小值.【詳解】因為,,,若不等式恒成立,令y=,當且僅當且即時,取等號所以所以故t的最大值為1.故選:C【點睛】本題主要考查不等式恒成立和基本不等式求最值,還考查了運算求解的能力,屬于中檔題.8、A【解析】
根據對數函數以及指數函數的性質比較,b,c的大小即可.【詳解】=log50.2<0,b=20.5>1,0<c=0.52<1,則,故選A.【點睛】本題考查了對數函數以及指數函數的性質,是一道基礎題.9、A【解析】可行域為一個三角形及其內部,其中,所以直線過點時取最小值,選B.10、A【解析】
將代數式與相乘,展開式利用基本不等式求出的最小值,將問題轉化為解不等式,解出即可.【詳解】由基本不等式得,當且僅當,即當時,等號成立,所以,的最小值為.由題意可得,即,解得.因此,實數的取值范圍是,故選A.【點睛】本題考查基本不等式的應用,考查不等式恒成立問題以及一元二次不等式的解法,對于不等式恒成立問題,常轉化為最值來處理,考查計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】
直接利用分層抽樣的比例關系得到答案.【詳解】青年職工與老年職工的人數比為,中年職工有24人,故老年職工為,故應抽取老年職工的人數為.故答案為:.【點睛】本題考查了分層抽樣的相關計算,意在考查學生的計算能力.12、【解析】
令,計算出模的最大值即可,當與同向時的模最大.【詳解】令,則,因為,所以當,,因此當與同向時的模最大,【點睛】本題主要考查了向量模的計算,以及二次函數在給定區間上的最值.整體換元的思想,屬于較的難題,在解二次函數的問題時往往結合圖像、開口、對稱軸等進行分析.13、或【解析】
方程的根等價于或,分別求兩個三角方程的根可得答案.【詳解】方程或,所以或,所以或.故答案為:或.【點睛】本題考查三角方程的求解,求解時可利用單位圓中的三角函數線,注意終邊相同角的表示,考查運算求解能力和數形結合思想的運用.14、.【解析】
由題意首先求得平均數,然后求解方差即可.【詳解】由題意,該組數據的平均數為,所以該組數據的方差是.【點睛】本題主要考查方差的計算公式,屬于基礎題.15、【解析】
由題意利用兩個向量共線的性質,兩個向量坐標形式的運算,可得,再利用基本不等式,求得的最大值.【詳解】向量,,若向量,共線,則,,即,當且僅當,時,取等號.故的最大值為,故答案為:.【點睛】本題主要考查兩個向量共線的性質,考查兩個向量坐標形式的運算和基本不等式,屬于基礎題.16、【解析】
設關于直線的對稱點的坐標為,再根據中點在直線上,且與直線垂直求解即可.【詳解】設關于直線的對稱點的坐標為,則中點為,則在直線上,故①.又與直線垂直有②,聯立①②可得.故.故答案為:【點睛】本題主要考查了點關于直線對稱的點坐標,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由和可列出方程組,解出和,即得通項公式;(2)將(1)中所得通項公式代入,列項,用裂項相消法求的前n項和.【詳解】解:(1)因為,,所以因為,所以故的通項公式為.(2)因為,所以.【點睛】本題考查求等差數列通項公式和用裂項相消法求數列前n項和,是典型考題.18、(1);(2).【解析】
(1)等價于圓心O到直線l的距離,再由點到直線的距離公式求解即可;(2)先設點,再結合題意可得點N在以為圓心,半徑為的圓R上,再結合點到直線的距離公式求解即可.【詳解】解:(1)∵圓O:,圓心,半徑,∵直線l:()與圓O相交于A,B兩點,且,∴圓心O到直線l的距離,又,,解得,∴直線l的方程為;(2)∵點E,F分別是圓O與x軸的左、右兩個交點,,∴,,設,,則,,,,,即.又∵點N在線段上,即,共線,,,∵點M是圓O上任意一點,,∴將m,n代入上式,可得,即.則點N在以為圓心,半徑為的圓R上.圓心R到直線l:的距離,又,故點N到直線l:距離的最小值為1.【點睛】本題考查了點到直線的距離公式,重點考查了點的軌跡方程的求法,屬中檔題.19、(1);(2)【解析】
(1)分別求出,,,再代入公式求余弦值;(2)由向量互相垂直,得到數量積為0,從而構造出關于的方程,再求的值.【詳解】(1),,,∴.(2).若,則,解得.【點睛】本題考查向量數量積公式的應用及兩向量垂直求參數的值,考查基本的運算求解能力.20、(1)0或2;(2).【解析】
(1)當過坐標原點時,可求得滿足題意;當不過坐標原點時,可根據直線截距式,利用截距相等構造方程求得結果;(2)當時,可得直線不經過第二象限;當時,結合函數圖象可知斜率為正,且在軸截距小于等于零,從而構造不等式組求得結果.【詳解】(1)當過坐標原點時,,解得:,滿足題意當不過坐標原點時,即時若,即時,,不符合題意若,即時,方程可整理為:,解得:綜上所述:或(2)當,即時,,不經過第二象限,滿足題意當,即時,方程可整理為:,解得:綜上所述:的取值范圍為:【點睛】本題考查直線方程的應用,涉及到直線截距式方程、由圖象確定參數范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年放射源及生產裝置合作協議書
- 丙綸長絲紡絲機企業ESG實踐與創新戰略研究報告
- 軟件代理服務企業數字化轉型與智慧升級戰略研究報告
- 大型機動客車車輪總成企業縣域市場拓展與下沉戰略研究報告
- 基站測量儀器企業ESG實踐與創新戰略研究報告
- 同步配音控制設備企業ESG實踐與創新戰略研究報告
- 同步交流電動機企業ESG實踐與創新戰略研究報告
- 精裝書籍裝訂生產線企業數字化轉型與智慧升級戰略研究報告
- 太陽能電池片生產設備企業數字化轉型與智慧升級戰略研究報告-20250401-223508
- 2025年電式混動車合作協議書
- 知識工程培訓課件
- (高清版)DB32∕T 2770-2015 活性炭纖維通 用技術要求與測試方法
- 2023中國偏頭痛診斷與治療指南
- 水電站經營權承包合同3篇
- RoHS供應商環境稽核檢查表
- 2025中國華電集團限公司校招+社招高頻重點提升(共500題)附帶答案詳解
- 起重傷害應急預案培訓
- 手術室護士入科匯報
- 【MOOC】電視采訪報道-中國傳媒大學 中國大學慕課MOOC答案
- 精神科患者首次風險評估單
- 家庭、私有制和國家的起源-課件
評論
0/150
提交評論