




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆安徽蚌埠龍湖中學(xué)高一下數(shù)學(xué)期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在正四棱柱,,則異面直線與所成角的余弦值為A. B. C. D.2.《九章算術(shù)》中有如下問題:“今有勾五步,股一十二步,問勾中容圓,徑幾何?”其大意:“已知直角三角形兩直角邊長分別為5步和12步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)若向此三角形內(nèi)隨機(jī)投一粒豆子,則豆子落在其內(nèi)切圓外的概率是()A. B. C. D.3.平面過正方體ABCD—A1B1C1D1的頂點(diǎn)A,,,,則m,n所成角的正弦值為A. B. C. D.4.已知扇形的圓心角,弧長為,則該扇形的面積為()A. B. C.6 D.125.已知,實(shí)數(shù)、滿足關(guān)系式,若對(duì)于任意給定的,當(dāng)在上變化時(shí),的最小值為,則()A. B. C. D.6.已知銳角滿足,則()A. B. C. D.7.已知函數(shù),若使得在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個(gè),則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知中,,,若,則的坐標(biāo)為()A. B. C. D.9.函數(shù),若方程恰有三個(gè)不同的解,記為,則的取值范圍是()A. B. C. D.10.已知數(shù)列的通項(xiàng)公式,前項(xiàng)和為,則關(guān)于數(shù)列、的極限,下面判斷正確的是()A.?dāng)?shù)列的極限不存在,的極限存在B.?dāng)?shù)列的極限存在,的極限不存在C.?dāng)?shù)列、的極限均存在,但極限值不相等D.?dāng)?shù)列、的極限均存在,且極限值相等二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,四棱錐中,所有棱長均為2,是底面正方形中心,為中點(diǎn),則直線與直線所成角的余弦值為____________.12.?dāng)?shù)列中,若,,則______;13.如果事件A與事件B互斥,且,,則=.14.在中,角,,所對(duì)的邊分別為,,,若的面積為,且,,成等差數(shù)列,則最小值為______.15.已知數(shù)列中,,當(dāng)時(shí),,數(shù)列的前項(xiàng)和為_____.16.?dāng)?shù)列中,如果存在使得“,且”成立(其中,),則稱為的一個(gè)“谷值”。若且存在“谷值”則實(shí)數(shù)的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)的內(nèi)角所對(duì)的邊分別為,且,.(Ⅰ)求的值;(Ⅱ)求的值.18.如圖,邊長為2的正方形中.(1)點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將、分別沿,折起,使,兩點(diǎn)重合于點(diǎn),求證:;(2)當(dāng)時(shí),將、分別沿,折起,使,兩點(diǎn)重合于點(diǎn),求三棱錐的體積.19.如圖所示,是正三角形,和都垂直于平面,且,,是的中點(diǎn),求證:(1)平面;(2).20.記為等差數(shù)列的前項(xiàng)和,已知,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)求,并求的最小值.21.某校準(zhǔn)備從高一年級(jí)的兩個(gè)男生和三個(gè)女生中選擇2個(gè)人去參加一項(xiàng)比賽.(1)若從這5個(gè)學(xué)生中任選2個(gè)人,求這2個(gè)人都是女生的概率;(2)若從男生和女生中各選1個(gè)人,求這2個(gè)人包括,但不包括的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
作出兩異面直線所成的角,然后由余弦定理求解.【詳解】在正四棱柱中,則異面直線與所成角為或其補(bǔ)角,在中,,,.故選A.【點(diǎn)睛】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角,然后通過解三角形求之.2、C【解析】
本題首先可以根據(jù)直角三角形的三邊長求出三角形的內(nèi)切圓半徑,然后分別計(jì)算出內(nèi)切圓和三角形的面積,最后通過幾何概型的概率計(jì)算公式即可得出答案.【詳解】如圖所示,直角三角形的斜邊長為,設(shè)內(nèi)切圓的半徑為,則,解得.所以內(nèi)切圓的面積為,所以豆子落在內(nèi)切圓外部的概率,故選C.【點(diǎn)睛】本題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關(guān)的幾何概型問題關(guān)鍵是計(jì)算問題的總面積以及事件的面積;幾何概型問題還有以下幾點(diǎn)容易造成失分,在備考時(shí)要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導(dǎo)致錯(cuò)誤;(2)基本事件對(duì)應(yīng)的區(qū)域測(cè)度把握不準(zhǔn)導(dǎo)致錯(cuò)誤;(3)利用幾何概型的概率公式時(shí),忽視驗(yàn)證事件是否等可能性導(dǎo)致錯(cuò)誤.3、A【解析】
試題分析:如圖,設(shè)平面平面=,平面平面=,因?yàn)槠矫妫裕瑒t所成的角等于所成的角.延長,過作,連接,則為,同理為,而,則所成的角即為所成的角,即為,故所成角的正弦值為,選A.【點(diǎn)睛】求解本題的關(guān)鍵是作出異面直線所成的角,求異面直線所成角的步驟是:平移定角、連線成形、解形求角、得鈍求補(bǔ).4、A【解析】
可先由弧長計(jì)算出半徑,再計(jì)算面積.【詳解】設(shè)扇形半徑為,則,,.故選:A.【點(diǎn)睛】本題考查扇形面積公式,考查扇形弧長公式,掌握扇形的弧長和面積公式是解題基礎(chǔ).5、A【解析】
先計(jì)算出,然后利用基本不等式可得出的值.【詳解】,由基本不等式得,當(dāng)且僅當(dāng)時(shí),由于,即當(dāng)時(shí),等號(hào)成立,因此,,故選:A.【點(diǎn)睛】本題考查極限的計(jì)算,考查利用基本不等式求最值,解題的關(guān)鍵就是利用數(shù)列的極限計(jì)算出帶的表達(dá)式,并利用基本不等式進(jìn)行計(jì)算,考查運(yùn)算求解能力,屬于中等題.6、D【解析】
根據(jù)為銳角可求得,根據(jù)特殊角三角函數(shù)值可知,從而得到,進(jìn)而求得結(jié)果.【詳解】,又,即本題正確選項(xiàng):【點(diǎn)睛】本題考查三角函數(shù)值的求解問題,關(guān)鍵是能夠熟悉特殊角的三角函數(shù)值,根據(jù)角的范圍確定特殊角的取值.7、A【解析】
根據(jù)在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個(gè),結(jié)合正弦函數(shù)的單調(diào)性,即可求得答案.【詳解】,使得在區(qū)間上為增函數(shù)可得當(dāng)時(shí),滿足整數(shù)至少有,舍去當(dāng)時(shí),,要使整數(shù)有且僅有一個(gè),須,解得:實(shí)數(shù)的取值范圍是.故選:A.【點(diǎn)睛】本題主要考查了根據(jù)三角函數(shù)在某區(qū)間上單調(diào)求參數(shù)值,解題關(guān)鍵是掌握正弦型三角函數(shù)單調(diào)區(qū)間的解法和結(jié)合三角函數(shù)圖象求參數(shù)范圍,考查了分析能力和計(jì)算能力,屬于難題.8、A【解析】
根據(jù),,可得;由可得M為BC中點(diǎn),即可求得的坐標(biāo),進(jìn)而利用即可求解.【詳解】因?yàn)椋砸驗(yàn)?,即M為BC中點(diǎn)所以所以所以選A【點(diǎn)睛】本題考查了向量的減法運(yùn)算和線性運(yùn)算,向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.9、D【解析】
由方程恰有三個(gè)不同的解,作出的圖象,確定,的取值范圍,得到的對(duì)稱性,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】設(shè)
作出函數(shù)的圖象如圖:由
則當(dāng)
時(shí)
,,
即函數(shù)的一條對(duì)稱軸為
,要使方程恰有三個(gè)不同的解,則
,
此時(shí)
,
關(guān)于
對(duì)稱,則
當(dāng)
,即
,則
則
的取值范圍是,選D.【點(diǎn)睛】本題主要考查了方程與函數(shù),數(shù)學(xué)結(jié)合是解決本題的關(guān)鍵,數(shù)學(xué)結(jié)合也是數(shù)學(xué)中比較重要的一種思想方法.10、D【解析】
分別考慮與的極限,然后作比較.【詳解】因?yàn)?,又,所以?shù)列、的極限均存在,且極限值相等,故選D.【點(diǎn)睛】本題考查數(shù)列的極限的是否存在的判斷以及計(jì)算,難度一般.注意求解的極限時(shí),若是分段數(shù)列求和的形式,一定要將多段數(shù)列均考慮到.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出直線與直線所成角的余弦值.【詳解】解:四棱錐中,所有棱長均為2,是底面正方形中心,為中點(diǎn),,平面,以為原點(diǎn),為軸,為軸,為軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,,∴,,設(shè)直線與直線所成角為,則,直線與直線所成角的余弦值為.故答案為:.【點(diǎn)睛】本題主要考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),屬于中檔題.12、【解析】
先分組求和得,再根據(jù)極限定義得結(jié)果.【詳解】因?yàn)?,,……,,所以則.【點(diǎn)睛】本題考查分組求和法、等比數(shù)列求和、以及數(shù)列極限,考查基本求解能力.13、0.5【解析】
表示事件A與事件B滿足其中之一占整體的占比.所以根據(jù)互斥事件概率公式求解.【詳解】【點(diǎn)睛】此題考查互斥事件概率公式,關(guān)鍵點(diǎn)在于理解清楚題目概率表示的實(shí)際含義,屬于簡(jiǎn)單題目.14、4【解析】
先根據(jù),,成等差數(shù)列得到,再根據(jù)余弦定理得到滿足的等式關(guān)系,而由面積可得,利用基本不等式可求的最小值.【詳解】因?yàn)?,成等差數(shù)列,,故.由余弦定理可得.由基本不等式可以得到,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.因?yàn)?,所以,所以即,?dāng)且僅當(dāng)時(shí)等號(hào)成立.故填4.【點(diǎn)睛】三角形中與邊有關(guān)的最值問題,可根據(jù)題設(shè)條件找到各邊的等式關(guān)系或角的等量關(guān)系,再根據(jù)邊的關(guān)系式的結(jié)構(gòu)特征選用合適的基本不等式求最值,也可以利用正弦定理把與邊有關(guān)的目標(biāo)代數(shù)式轉(zhuǎn)化為與角有關(guān)的三角函數(shù)式后再求其最值.15、.【解析】
首先利用數(shù)列的關(guān)系式的變換求出數(shù)列為等差數(shù)列,進(jìn)一步求出數(shù)列的通項(xiàng)公式,最后求出數(shù)列的和.【詳解】解:數(shù)列中,,當(dāng)時(shí),,整理得,即,∴數(shù)列是以為首項(xiàng),6為公差的等差數(shù)列,故,所以,故答案為:.【點(diǎn)睛】本題主要考查定義法判斷等差數(shù)列,考查等差數(shù)列的前項(xiàng)和,考查運(yùn)算能力和推理能力,屬于中檔題.16、【解析】
求出,,,當(dāng),遞減,遞增,分別討論,,是否存在“谷值”,注意運(yùn)用單調(diào)性即可.【詳解】解:當(dāng)時(shí),有,,當(dāng),遞減,遞增,且.若時(shí),有,則不存在“谷值”;若時(shí),,則不存在“谷值”;若時(shí),①,則不存在"谷值";②,則不存在"谷值";③,存在"谷值"且為.綜上所述,的取值范圍是故答案為:【點(diǎn)睛】本題考查新定義及運(yùn)用,考查數(shù)列的單調(diào)性和運(yùn)用,正確理解新定義是迅速解題的關(guān)鍵,是一道中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】(Ⅰ)因?yàn)?,所以分別代入得解得(Ⅱ)由得,因?yàn)樗运浴究键c(diǎn)定位】本題考查了正弦定理和余弦定理的應(yīng)用,考查了方程思想和運(yùn)算能力.由求的過程中體現(xiàn)了整體代換的運(yùn)算技巧,而求的過程則體現(xiàn)了“通性通法”的常規(guī)考查.18、(1)證明見解析;(2)【解析】
(1)折疊過程中,,保持不變,即,,由此可得線面垂直,從而有線線垂直;(2)由(1)知面,即是三棱錐的高,求出底面積可得體積.【詳解】(1)證明:由,.可得:,,,面又面(2)解:在三棱錐中,,,面,由,,可得.【點(diǎn)睛】本題考查證明線線垂直,考查求棱錐的體積.立體幾何中證明線線垂直,通常由線面垂直的性質(zhì)定理給出,即先證線面垂直,而證線面垂直又必須證明線線垂直,注意線線垂直與線面垂直的轉(zhuǎn)化.三棱錐中任何一個(gè)面都可以當(dāng)作底面,因此一般尋找高易得的面為底面,常用換底法求體積.19、(1)見解析.(2)見解析.【解析】
(1)先取的中點(diǎn),連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)根據(jù)線面垂直的判定定理先證明平面,再由線面垂直的性質(zhì),即可得到.【詳解】(1)取的中點(diǎn),連接,可得,且.平面,平面,.又,,且,∴四邊形是平行四邊形,.又平面,平面,平面.(2)在中,,為的中點(diǎn),.是正三角形,為的中點(diǎn),,.平面,∴四邊形是矩形,,又,平面.又平面,.,平面.又平面,.【點(diǎn)睛】本題主要考查線面平行以及線面垂直,熟記線面平行與垂線的判定定理以及性質(zhì)定理即可,屬于??碱}型.20、(1),(2),最小值為?1.【解析】
(Ⅰ)根據(jù)等差數(shù)列的求和公式,求得公差d,即可表示出的通項(xiàng)公式;(Ⅱ)根據(jù)等差數(shù)列的求和公式得Sn=n2-8n,根據(jù)二次函數(shù)的性質(zhì),可得Sn的最小值.【詳解】(I)設(shè)的公差為d,由題意得.由得d=2.所以的通項(xiàng)公式為.(II)由(I)得.所以當(dāng)n=4時(shí),取得最小值,最小值為?1.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)的和公式,考查了等差數(shù)列前n項(xiàng)和的最值問題;求等差數(shù)列前n項(xiàng)和的最值有兩種方法:①函數(shù)法,②鄰項(xiàng)變號(hào)法.21、(1);(2).【解析】
(1)寫出從5個(gè)學(xué)生中任選2個(gè)人的所有等可能基本事件,計(jì)算事件2個(gè)人都是女生所含的基本事件個(gè)數(shù);(2)寫出從男生和女生中各選1個(gè)人的所有等可能基本事件,計(jì)算事件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45398-2025信息技術(shù)眾包服務(wù)平臺(tái)功能通用要求
- 江蘇省南京聯(lián)合體【棲霞、江寧、雨花】重點(diǎn)達(dá)標(biāo)名校2025年初三中考一模試卷化學(xué)試題含解析
- 湖南省長沙市瀏陽市2025屆數(shù)學(xué)三下期末綜合測(cè)試模擬試題含解析
- 寧夏葡萄酒與防沙治沙職業(yè)技術(shù)學(xué)院《大學(xué)英語Ⅱ(聽力)》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢紡織大學(xué)外經(jīng)貿(mào)學(xué)院《新藥研究與開發(fā)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 遼寧省沈陽市鐵西區(qū)達(dá)標(biāo)名校2025年下學(xué)期初三生物試題中考仿真模擬考試試卷(四)含解析
- 內(nèi)蒙古醫(yī)科大學(xué)《智能制造系統(tǒng)架構(gòu)》2023-2024學(xué)年第二學(xué)期期末試卷
- 延安大學(xué)《木版畫術(shù)科技能教學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湛江幼兒師范??茖W(xué)?!犊谇慌R床醫(yī)學(xué)概論(口腔修復(fù)學(xué))》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川鐵道職業(yè)學(xué)院《鋼筋混凝土與砌體結(jié)構(gòu)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 參展商服務(wù)手冊(cè)
- 隨機(jī)過程-華東師范大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 《壽險(xiǎn)的功能與意義》課件
- 公共危機(jī)管理(本)-第五次形成性考核-國開(BJ)-參考資料
- DB15-T 3738-2024 家政服務(wù)機(jī)構(gòu)星級(jí)劃分及評(píng)定規(guī)范
- 實(shí)驗(yàn)室危險(xiǎn)化學(xué)品安全管理
- 新疆烏魯木齊市(2024年-2025年小學(xué)六年級(jí)語文)部編版期末考試(上學(xué)期)試卷及答案
- 初中數(shù)學(xué)新課程標(biāo)準(zhǔn)(2024年版)
- UL9540A標(biāo)準(zhǔn)中文版-2019儲(chǔ)能系統(tǒng)UL中文版標(biāo)準(zhǔn)
- 計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)基礎(chǔ)(微課版)(周舸第6版) 各章課后習(xí)題
- GB/T 36547-2024電化學(xué)儲(chǔ)能電站接入電網(wǎng)技術(shù)規(guī)定
評(píng)論
0/150
提交評(píng)論