




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省紅河州蒙自市重點達標名校中考聯考數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a62.如圖,EF過?ABCD對角線的交點O,交AD于E,交BC于F,若?ABCD的周長為18,,則四邊形EFCD的周長為A.14 B.13 C.12 D.103.如圖的平面圖形繞直線l旋轉一周,可以得到的立體圖形是()A. B. C. D.4.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)5.如圖,四邊形ABCD內接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數為()A.100° B.105° C.110° D.115°6.已知二次函數y=x2+bx﹣9圖象上A、B兩點關于原點對稱,若經過A點的反比例函數的解析式是y=,則該二次函數的對稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣7.有四包真空包裝的火腿腸,每包以標準質量450g為基準,超過的克數記作正數,不足的克數記作負數.下面的數據是記錄結果,其中與標準質量最接近的是()A.+2 B.﹣3 C.+4 D.﹣18.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.9.計算x﹣2y﹣(2x+y)的結果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y10.下列計算正確的有()個①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.311.如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現在有如下4個結論:①≌;②;③∠GDE=45°;④DG=DE在以上4個結論中,正確的共有()個A.1個 B.2個 C.3個 D.4個12.“嫦娥一號”衛星順利進入繞月工作軌道,行程約有1800000千米,1800000這個數用科學記數法可以表示為A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖是我區某一天內的氣溫變化圖,結合該圖給出的信息寫出一個正確的結論:________.14.如圖,將△ABC繞點A逆時針旋轉100°,得到△ADE.若點D在線段BC的延長線上,則的大小為________.15.如圖,正方形ABCD的邊長為3,點E,F分別在邊BCCD上,BE=CF=1,小球P從點E出發沿直線向點F運動,完成第1次與邊的碰撞,每當碰到正方形的邊時反彈,反彈時反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經過的路程為__.16.如圖,六邊形ABCDEF的六個內角都相等.若AB=1,BC=CD=3,DE=2,則這個六邊形的周長等于_________.17.小明統計了家里3月份的電話通話清單,按通話時間畫出頻數分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數的頻率是_____.18.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數y1和過P,A兩點的二次函數y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當△ODA是等邊三角形時,這兩個二次函數的最大值之和等于__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)解方程組:.20.(6分)某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進行了統計,并繪制如圖所示的扇形統計圖和條形統計圖.根據圖中信息解答下列問題:(1)該超市“元旦”期間共銷售個綠色雞蛋,A品牌綠色雞蛋在扇形統計圖中所對應的扇形圓心角是度;(2)補全條形統計圖;(3)如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數?21.(6分)如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.22.(8分)程大位是珠算發明家,他的名著《直指算法統宗》詳述了傳統的珠算規則,確立了算盤用書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾?。馑际牵河?00個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人?23.(8分)已知A(﹣4,2)、B(n,﹣4)兩點是一次函數y=kx+b和反比例函數y=圖象的兩個交點.求一次函數和反比例函數的解析式;求△AOB的面積;觀察圖象,直接寫出不等式kx+b﹣>0的解集.24.(10分)如圖,在平面直角坐標系xOy中,將拋物線y=x2平移,使平移后的拋物線經過點A(–3,0)、B(1,0).(1)求平移后的拋物線的表達式.(2)設平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當BP與CP之和最小時,P點坐標是多少?(3)若y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標;若不存在,說明理由.25.(10分)綜合與實踐﹣﹣旋轉中的數學問題背景:在一次綜合實踐活動課上,同學們以兩個矩形為對象,研究相似矩形旋轉中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:觀察發現:(1)如圖1,若A′B′∥AB,則AA′與CC′的數量關系是______;操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉的過程中,(1)中的結論還成立嗎?若成立,請證明;若不成立,請說明理由;操作計算:(3)如圖3,在(2)的條件下,當矩形A′B′C′D′繞點O旋轉至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.26.(12分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數量的禮盒也全部售完,禮盒的售價均為60元/盒.(1)2014年這種禮盒的進價是多少元/盒?(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?27.(12分)小李在學習了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:他認為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應該成立.即如圖①,在中,是邊上的中線,若,求證:.如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結論)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數量關系.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據合并同類項法則判斷A、C;根據積的乘方法則判斷B;根據冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【點睛】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質和運算法則是解題的關鍵.2、C【解析】
∵平行四邊形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四邊形ABCD=18,∴CD+AD=9,∴C四邊形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故選C.【點睛】本題關鍵在于利用三角形全等,解題關鍵是將四邊形CDEF的周長進行轉化.3、B【解析】
根據面動成體以及長方形繞一邊所在直線旋轉一周得圓柱即可得答案.【詳解】由圖可知所給的平面圖形是一個長方形,長方形繞一邊所在直線旋轉一周得圓柱,故選B.【點睛】本題考查了點、線、面、體,熟記各種常見平面圖形旋轉得到的立體圖形是解題關鍵.4、C【解析】
直接利用位似圖形的性質得出對應點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質,數形結合思想解題是本題的解題關鍵.5、B【解析】
根據圓內接四邊形的性質得出∠C的度數,進而利用平行線的性質得出∠ABC的度數,利用角平分線的定義和三角形內角和解答即可.【詳解】∵四邊形ABCD內接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故選:B.【點睛】本題考查了圓內接四邊形的性質,關鍵是根據圓內接四邊形的性質得出∠C的度數.6、D【解析】
設A點坐標為(a,),則可求得B點坐標,把兩點坐標代入拋物線的解析式可得到關于a和b的方程組,可求得b的值,則可求得二次函數的對稱軸.【詳解】解:∵A在反比例函數圖象上,∴可設A點坐標為(a,).∵A、B兩點關于原點對稱,∴B點坐標為(﹣a,﹣).又∵A、B兩點在二次函數圖象上,∴代入二次函數解析式可得:,解得:或,∴二次函數對稱軸為直線x=﹣.故選D.【點睛】本題主要考查二次函數的性質,待定系數法求二次函數解析式,根據條件先求得b的值是解題的關鍵,注意掌握關于原點對稱的兩點的坐標的關系.7、D【解析】試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質量是-1的工件最接近標準工件.故選D.8、D【解析】
根據菱形的性質得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質,也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.9、C【解析】
原式去括號合并同類項即可得到結果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.10、C【解析】
根據積的乘方法則,多項式乘多項式的計算法則,完全平方公式,合并同類項的計算法則,乘方的定義計算即可求解.【詳解】①(﹣2a2)3=﹣8a6,錯誤;②(x﹣2)(x+3)=x2+x﹣6,錯誤;③(x﹣2)2=x2﹣4x+4,錯誤④﹣2m3+m3=﹣m3,正確;⑤﹣16=﹣1,正確.計算正確的有2個.故選C.【點睛】考查了積的乘方,多項式乘多項式,完全平方公式,合并同類項,乘方,關鍵是熟練掌握計算法則正確進行計算.11、C【解析】【分析】根據正方形的性質和折疊的性質可得AD=DF,∠A=∠GFD=90°,于是根據“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據全等三角形性質可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯誤的.【詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長是12,∴BE=EC=EF=6,設AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯誤;∴正確說法是①②③故選:C【點睛】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,有一定的難度.12、C【解析】分析:一個絕對值大于10的數可以表示為的形式,其中為整數.確定的值時,整數位數減去1即可.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.詳解:1800000這個數用科學記數法可以表示為故選C.點睛:考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、這一天的最高氣溫約是26°【解析】
根據我區某一天內的氣溫變化圖,分析變化趨勢和具體數值,即可求出答案.【詳解】解:根據圖象可得這一天的最高氣溫約是26°,故答案為:這一天的最高氣溫約是26°.【點睛】本題考查的是函數圖象問題,統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.14、40°【解析】
根據旋轉的性質可得出AB=AD、∠BAD=100°,再根據等腰三角形的性質可求出∠B的度數,此題得解.【詳解】根據旋轉的性質,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°?100°)=40°.故填:40°.【點睛】本題考查了旋轉的性質以及等腰三角形的性質,根據旋轉的性質結合等腰三角形的性質求出∠B的度數是解題的關鍵.15、AB,【解析】
根據已知中的點E,F的位置,可知入射角的正切值為,通過相似三角形,來確定反射后的點的位置.再由勾股定理就可以求出小球第5次碰撞所經過路程的總長度.【詳解】根據已知中的點E,F的位置,可知入射角的正切值為,第一次碰撞點為F,在反射的過程中,根據入射角等于反射角及平行關系的三角形的相似可得,第二次碰撞點為G,在AB上,且AG=AB,第三次碰撞點為H,在AD上,且AH=AD,第四次碰撞點為M,在DC上,且DM=DC,第五次碰撞點為N,在AB上,且BN=AB,第六次回到E點,BE=BC.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球第5次經過的路程為:++++=,故答案為AB,.【點睛】本題考查了正方形與軸對稱的性質,解題的關鍵是熟練的掌握正方形與軸對稱的性質.16、2【解析】
凸六邊形ABCDEF,并不是一規則的六邊形,但六個角都是110°,所以通過適當的向外作延長線,可得到等邊三角形,進而求解.【詳解】解:如圖,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、P.∵六邊形ABCDEF的六個角都是110°,∴六邊形ABCDEF的每一個外角的度數都是60°.∴△AHF、△BGC、△DPE、△GHP都是等邊三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六邊形的周長為1+3+3+1+4+1=2.故答案為2.【點睛】本題考查了等邊三角形的性質及判定定理;解題中巧妙地構造了等邊三角形,從而求得周長.是非常完美的解題方法,注意學習并掌握.17、0.7【解析】
用通話時間不足10分鐘的通話次數除以通話的總次數即可得.【詳解】由圖可知:小明家3月份通話總次數為20+15+10+5=50(次);其中通話不足10分鐘的次數為20+15=35(次),∴通話時間不足10分鐘的通話次數的頻率是35÷50=0.7.故答案為0.7.18、2【解析】
連接PB、PC,根據二次函數的對稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據等邊三角形的性質求解即可.【詳解】解:如圖,連接PB、PC,由二次函數的性質,OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點B、C的縱坐標之和為:OB×sin60°+PC×sin60°=4×=2,即兩個二次函數的最大值之和等于2.故答案為2.【點睛】本題考查了二次函數的最值問題,等邊三角形的判定與性質,解直角三角形,作輔助線構造出等邊三角形并利用等邊三角形的知識求解是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、【解析】
方程組整理后,利用加減消元法求出解即可.【詳解】解:方程組整理得:①+②得:9x=-45,即x=-5,把x=-代入①得:解得:則原方程組的解為【點睛】本題主要考查二元一次方程組的解法,二元一次方程組的解法有兩種:代入消元法和加減消元法,根據題目選擇合適的方法.20、(1)2400,60;(2)見解析;(3)500【解析】整體分析:(1)由C品牌1200個占總數的50%可得雞蛋的數量,用A品牌占總數的百分比乘以360°即可;(2)計算出B品牌的數量;(3)用B品牌與總數的比乘以1500.解:(1)共銷售綠色雞蛋:1200÷50%=2400個,A品牌所占的圓心角:×360°=60°;故答案為2400,60;(2)B品牌雞蛋的數量為:2400﹣400﹣1200=800個,補全統計圖如圖:(3)分店銷售的B種品牌的綠色雞蛋為:×1500=500個.21、(1)見解析;(2)菱形.【解析】
(1)根據角平分線的性質可得∠ADE=∠CDE,再由平行線的性質可得AB∥CD,易得AD=AE,從而可證得結論;(2)若點與點重合,可證得AD=AB,根據鄰邊相等的平行四邊形是菱形即可作出判斷.【詳解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵點E與B重合,∴AD=AB.∵四邊形ABCD是平行四邊形∴平行四邊形ABCD為菱形.【點睛】本題考查了平行四邊形的性質,平行線的性質,等腰三角形的性質,菱形的性質,熟練掌握各知識是解題的關鍵.22、大和尚有25人,小和尚有75人.【解析】
設大和尚有x人,小和尚有y人,根據100個和尚吃100個饅頭且1個大和尚分3個、3個小和尚分1個,即可得出關于x,y的二元一次方程組,解之即可得出結論.【詳解】解:設大和尚有x人,小和尚有y人,依題意,得:,解得:.答:大和尚有25人,小和尚有75人.【點睛】考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.23、(1)反比例函數解析式為y=﹣,一次函數的解析式為y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】試題分析:(1)先把點A的坐標代入反比例函數解析式,即可得到m=﹣8,再把點B的坐標代入反比例函數解析式,即可求出n=1,然后利用待定系數法確定一次函數的解析式;(1)先求出直線y=﹣x﹣1與x軸交點C的坐標,然后利用S△AOB=S△AOC+S△BOC進行計算;(3)觀察函數圖象得到當x<﹣4或0<x<1時,一次函數的圖象在反比例函數圖象上方,據此可得不等式的解集.試題解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函數解析式為,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函數的解析式為y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,則x=﹣1,即直線y=﹣x﹣1與x軸交于點C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由圖可得,不等式的解集為:x<﹣4或0<x<1.考點:反比例函數與一次函數的交點問題;待定系數法求一次函數解析式.24、(1)y=x2+2x﹣3;(2)點P坐標為(﹣1,﹣2);(3)點M坐標為(﹣1,3)或(﹣1,2).【解析】
(1)設平移后拋物線的表達式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項系數與原拋物線的二次項系數相同,從而可求得a的值,于是可求得平移后拋物線的表達式;(2)先根據平移后拋物線解析式求得其對稱軸,從而得出點C關于對稱軸的對稱點C′坐標,連接BC′,與對稱軸交點即為所求點P,再求得直線BC′解析式,聯立方程組求解可得;(3)先求得點D的坐標,由點O、B、E、D的坐標可求得OB、OE、DE、BD的長,從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當或時,以M、O、D為頂點的三角形與△BOD相似.由比例式可求得MD的長,于是可求得點M的坐標.【詳解】(1)設平移后拋物線的表達式為y=a(x+3)(x﹣1),∵由平移的性質可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項系數與原拋物線的二次項系數相同,∴平移后拋物線的二次項系數為1,即a=1,∴平移后拋物線的表達式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為直線x=﹣1,與y軸的交點C(0,﹣3),則點C關于直線x=﹣1的對稱點C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點即為所求點P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點P坐標為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點M只能在點D上方,∵∠BOD=∠ODM=135°,∴當或時,以M、O、D為頂點的三角形△BOD相似,①若,則,解得DM=2,此時點M坐標為(﹣1,3);②若,則,解得DM=1,此時點M坐標為(﹣1,2);綜上,點M坐標為(﹣1,3)或(﹣1,2).【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了平移的性質、翻折的性質、二次函數的圖象和性質、待定系數法求二次函數的解析式、等腰直角三角形的性質、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關鍵.25、(1)AA′=CC′;(2)成立,證明見解析;(3)AA′=【解析】
(1)連接AC、A′C′,根據題意得到點A、A′、C′、C在同一條直線上,根據矩形的性質得到OA=OC,OA′=OC′,得到答案;(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據全等三角形的性質證明;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,根據相似多邊形的性質求出B′C′,根據勾股定理計算即可.【詳解】(1)AA′=CC′,理由如下:連接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴點A、A′、C′、C在同一條直線上,由矩形的性質可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案為AA′=CC′;(2)(1)中的結論還成立,AA′=CC′,理由如下:連接AC、A′C′,則AC、A′C′都經過點O,由旋轉的性質可知,∠A′OA=∠C′OC,∵四邊形ABCD和四邊形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國防腐蝕袋行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國防刮玻璃行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國鐵路車輛配件行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國金融中的人工智能行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國造雪機行業市場發展趨勢與前景展望戰略研究報告
- 班級工作計劃與總結
- 2025-2030中國藥物交付合作條款和協議行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國茶壺行業市場發展趨勢與前景展望戰略研究報告
- 6.2 數據的收集 教學設計 2024-2025學年北師大版(2024)數學七年級上冊
- 2025-2030中國自動感應行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國煤焦油雜酚油行業市場發展趨勢與前景展望戰略研究報告
- 防洪防汛安全教育知識培訓
- 2020-2025年中國遼寧省風力發電行業發展潛力分析及投資方向研究報告
- GB 15269-2025雪茄煙
- 規模養殖場十項管理制度
- 2025航天知識競賽考試題庫(含答案)
- 勞務派遣勞務外包項目方案投標文件(技術方案)
- 瘧疾2025培訓課件
- 流行性感冒診療方案(2025版)解讀課件
- 2025年度打印機銷售與升級改造合同模板4篇
評論
0/150
提交評論